
ENGINEERING ALGORITHMS FOR SOLVING GEOMETRIC

AND GRAPH PROBLEMS ON LARGE DATA SETS

by

Adan Jose Cosgaya Lozano

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2011

c© Copyright by Adan Jose Cosgaya Lozano, 2011

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled “ENGINEERING

ALGORITHMS FOR SOLVING GEOMETRIC AND GRAPH PROBLEMS ON

LARGE DATA SETS” by Adan Jose Cosgaya Lozano in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Dated: March 14, 2011

External Examiner:

Research Supervisors:

Examining Committee:

Departmental Representative:

ii

DALHOUSIE UNIVERSITY

DATE: March 14, 2011

AUTHOR: Adan Jose Cosgaya Lozano

TITLE: ENGINEERING ALGORITHMS FOR SOLVING GEOMETRIC
AND GRAPH PROBLEMS ON LARGE DATA SETS

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: Ph.D. CONVOCATION: May YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions. I understand that my thesis will be electronically
available to the public.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing), and that all such use is clearly
acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . viii

List of Figures . ix

Abstract . xi

List of Abbreviations and Symbols Used xii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Organization of the Thesis . 5

Chapter 2 Memory Hierarchies and Their Impact on Algorithm De-

sign . 7

2.1 Memory Hierarchies . 7

2.2 Impact on Traditional Algorithms . 8

2.3 I/O-Efficient Algorithms . 9

2.4 Algorithm Engineering . 10

Chapter 3 Introduction to Skyline Computation 12

3.1 Overview . 12

3.1.1 The Concept of Skyline Query 13

3.2 Skyline Queries in Centralized Environments 14

3.2.1 Algorithms Without Preprocessing 15

3.2.2 Index-based Algorithms . 17

3.2.3 Extensions of Skyline Computations 19

3.2.4 Detailed Discussion of Skyline Algorithms 20

3.2.4.1 Divide and Conquer (DC) 20

iv

3.2.4.2 Branch-and-Bound Skyline (BBS) 21

3.3 Skyline Queries in Distributed Environments 24

3.3.1 Skyline Computation in Peer-to-Peer Networks 24

3.3.2 Skyline Computation in Parallel 26

3.4 Shared-Nothing Clusters . 29

3.5 Contributions . 30

Chapter 4 Parallel Skyline Computation 32

4.1 Overview . 32

4.2 Parallel Skyline Algorithm . 33

4.2.1 Data Distribution . 35

4.2.2 Local Skyline Computation 36

4.2.3 Global Skyline Computation 37

4.2.3.1 Few Local Skyline Points 37

4.2.3.2 Many Local Skyline Points 39

4.2.4 Complexity . 40

4.3 A Parallel R-Tree Construction Algorithm 41

4.3.1 A Pointerless R-Tree Representation 42

4.3.2 Parallel R-Tree Construction 44

4.3.3 Querying the Constructed R-Tree 45

4.4 Implementation Details . 45

4.5 Performance Evaluation . 46

4.5.1 Platforms and Measurements 47

4.5.2 Performance Measurement . 47

4.5.3 Datasets . 48

4.5.4 Speed-up Evaluation . 49

4.5.4.1 Total Speed-up . 49

4.5.4.2 Query Speed-up . 51

4.5.5 Scale-up Evaluation . 55

Chapter 5 External-Memory Skyline Computation 58

5.1 Overview . 58

v

5.2 DFS-Skyline . 60

5.2.1 R-tree Construction . 60

5.2.2 Skyline Construction . 62

5.3 Presorted-BBS . 64

5.4 Performance Evaluation . 64

5.4.1 Comparison of IM and EM Algorithms 66

5.4.2 Comparison of External Memory Algorithms 69

Chapter 6 I/O-Efficient Algorithms for Massive Graphs 73

6.1 Overview . 73

6.1.1 Terminology and Definitions 74

6.1.2 Massive Graphs in the Real-World 76

6.2 State of the Art . 79

6.2.1 Difficulties with I/O-Efficient Graph Exploration 79

6.2.2 Techniques for I/O-Efficient Graph Algorithms 80

6.2.2.1 Techniques for Speeding Up Graph Exploration . . . 80

6.2.2.2 Non-Exploration-Based Techniques 82

6.2.3 Engineering of Graphs Algorithms 84

6.3 Contributions . 86

Chapter 7 External-Memory Strong Connectivity 88

7.1 Introduction . 88

7.2 A Contraction-Based Strong Connectivity Algorithm 89

7.2.1 Preprocessing Phase . 89

7.2.2 Contraction Phase . 91

7.2.3 Postprocessing . 93

7.2.4 Analysis . 94

7.3 Implementation Details . 95

7.4 Performance Evaluation . 99

7.4.1 Environment and Settings . 100

7.4.2 Data Sets . 101

7.4.3 EmSCC vs. SeSCC . 102

vi

7.4.4 Factors Affecting the Performance of EmSCC 103

Chapter 8 External-Memory Topological Sorting 108

8.1 Introduction . 108

8.2 Topological Sorting by Iterative Improvement 109

8.2.1 Computing the Initial Numbering 110

8.2.2 Growing the Satisfied Subgraph 111

8.2.3 Analysis . 112

8.2.4 Satisfying Local Edges . 114

8.3 Other Approaches to Topological Sorting 116

8.3.1 Topological Sorting Using Semi-External DFS 116

8.3.2 Iterative Peeling of Sources and Sinks 116

8.3.3 Divide and Conquer Based on Reachability Queries 118

8.4 Implementation Details . 119

8.5 Performance Evaluation . 120

8.5.1 Environment and Settings . 120

8.5.2 Data Sets . 120

8.5.3 Experimental Results . 122

8.5.3.1 Comparison of Running Times 122

8.5.3.2 The Effect of the Graph’s Structure 126

8.5.3.3 Further Analysis of IterTS 127

Chapter 9 Conclusions . 131

Bibliography . 133

vii

List of Tables

4.1 Data sets and their skyline sizes. 49

7.1 Maximum sizes of vertex sets processed by SE-DFS 100

7.2 Experimental results with strong connectivity on SE setting . . 103

7.3 Experimental results with strong connectivity on EM setting . 104

8.1 Experimental results with topological sorting algorithms 123

viii

List of Figures

2.1 Memory hierarchy. 8

3.1 A sample dataset and its skyline. 14

3.2 Recursive filtering in DC. 21

3.3 The R-tree for the point set from Figure 3.1. 22

3.4 Sequential query times for DC and BBS 23

3.5 A Shared-nothing cluster. 30

4.1 Illustration of the two phases of Algorithm 1 35

4.2 Partitions of point set over 4 processors 36

4.3 Illustration of pointerless R-tree 43

4.4 Parallel R-tree construction: merging the R-tree pieces. 44

4.5 Synthetic data distributions used in the experiments. 48

4.6 Speedup results on uniform data 50

4.7 Speedup results on hydrological data 52

4.8 Speedup results on anticorrelated data 53

4.9 Break-down of a 2d query with 5M points 54

4.10 Scale-up results on uniform data with 5M points 56

4.11 Scale-up results on hydrological data with 5M points 56

5.1 DFSS vs. Presorted-BBS 60

5.2 IM and EM results of DFSS and Presorted-BBS 67

5.3 Query times of DFSS, Presorted-BBS and SFS 70

5.4 DFSS and Presorted-BBS break-down of a 6d query . . . 71

6.1 Illustration of directed graphs. 76

7.1 Spanning tree and the Euler tour around it 91

ix

7.2 EmSCC: Illustration of a contraction step 93

7.3 EmSCC: Illustration of postprocessing 94

7.4 Illustration of internal-memory representation of the graph . . 99

7.5 Variation of EmSCC total time 106

8.1 IterTS: Illustration of selecting in-edge for a vertex 111

8.2 IterTS: Illustration of heuristic procedure 114

8.3 IterTS: Running time, I/O volume and convergence graphs . 128

x

Abstract

This thesis focuses on the engineering of algorithms for massive data sets. In recent

years, massive data sets have become ubiquitous and existing computing applications,

for the most part, cannot handle these data sets efficiently: either they crash or their

performance degrades to a point where they take unacceptably long to process the

input. Parallel computing and I/O-efficient algorithms provide the means to process

massive amounts of data efficiently. The work presented in this thesis makes use of

these techniques and focuses on obtaining practically efficient solutions for specific

problems in computational geometry and graph theory.

We focus our attention first on skyline computations. This problem arises in

decision-making applications and has been well studied in computational geometry

and also by the database community in recent years. Most of the previous work

on this problem has focused on sequential computations using a single processor,

and the algorithms produced are not able to efficiently process data sets beyond the

capacity of main memory. Such massive data sets are becoming more common; thus,

parallelizing the skyline computation and eliminating the I/O bottleneck in large-scale

computations is increasingly important in order to retrieve the results in a reasonable

amount of time. Furthermore, we address two fundamental problems of graph analysis

that appear in many application areas and which have eluded efforts to develop

theoretically I/O-efficient solutions: computing the strongly connected components

of a directed graph and topological sorting of a directed acyclic graph.

To approach these problems, we designed algorithms, developed efficient imple-

mentations and, using extensive experiments, verified that they perform well in prac-

tice. Our solutions are based on well understood algorithmic techniques. The ex-

periments show that, even though some of these techniques do not lead to provably

efficient algorithms, they do lead to practically efficient heuristic solutions. In partic-

ular, our parallel algorithm for skyline computation is based on divide-and-conquer,

while the strong connectivity and topological sorting algorithms use techniques such

as graph contraction, the Euler technique, list ranking, and time-forward processing.

xi

List of Abbreviations and Symbols Used

BBS Branch and Bound Skyline Algorithm

BNL Block-Nested-Loops Skyline Algorithm

BRT Buffered Repository Tree

CGM Coarse Grained Multicomputer

DAG Directed Acyclic Graph

DC Divide and Conquer Skyline Algorithm

DFSS DFS-Skyline Algorithm

DSL Distributed Skyline Algorithm

EMSCC External Memory Strongly Connected Components
Algorithm

GIS Geographic Information Systems

ITERTS Topological Sorting by Iterative Improvement Al-
gorithm

LESS Linear Elimination Sort for Skyline Algorithm

MBB Minimum Bounding Box

MPI Message Passing Interface

MST Minimum Spanning Tree

NN Nearest-Neighbor Skyline Algorithm

PEELTS Iterative Peeling of Sources and Sinks Algorithm

PaDSkyline Parallel Distributed Skyline

xii

REACHTS Divide and Conquer Based on Reachability Queries
Algorithm

SESCC Semi-External Strongly Connected Components
Algorithm

SETS Topological Sorting Using Semi-External DFS Al-
gorithm

SALSA Sort and Limit Skyline Algorithm

SCC Strongly Connected Component

SCSG Strongly Connected Subgraph

SFS Sort-Filter Skyline Algorithm

SSP Skyline Search Space Partitioning Algorithm

STXXL Standard Template Library for Extra Large Data
Sets

xiii

Acknowledgements

First and foremost, I would like to thank my supervisors Andrew Rau-Chaplin and

Norbert Zeh for their guidance and their generous support. I greatly appreciate the

time and the attention they have always given me.

I am sincerely grateful to Andrew for introducing me to research work and for

being present during my early years at Dalhousie. I would like to also thank Norbert

for becoming more a friend than a supervisor. His valuable feedback and attention

to detail contributed enormously to the completion of this work. He has been very

patient with me and taught me not to rush into a conclusion without having all the

facts straight.

I would also like to thank the members of my thesis examination committee for

taking the time to read this thesis.

I am also grateful to my parents who, despite the distance, have always expressed

their unconditional love, encouragement, and support.

And last but not the least, I would like to thank my wife Monica and daughter

Natalia for their love and patience throughout these years. Monica has always been

encouraging and understanding, even as I had been mentally immersed in my work.

I could not have done it without you.

xiv

Chapter 1

Introduction

The main contribution of this thesis is the development of solutions for two types

of problems: geometric problems, in particular the skyline computation of multi-

dimensional data, and graph problems, specifically connectivity of directed graphs.

These problems are, in terms of used techniques and in terms of focus, unrelated.

Nevertheless, the motivation behind both problems is the same, namely, challenges

in processing large amounts of data.

1.1 Motivation

Technological advances in areas such as communications, sensors, high performance

computing, and digital storage technology, together with the ubiquitous use of com-

puters, have made it possible to acquire and store massive collections of data. Con-

sider the following examples. Wal-Mart’s customer transactions database contains

over 2.5 petabytes of data which is used for strategic decision making [9]. Google’s

search engine provides fast text search by storing and indexing over 26 billion web

pages [8]. A telecommunications company, such as AT&T, is able to collect and store

billions of call detail records per day [51], easily making its storage requirements reach

several tera- to petabytes. Online geographic information systems, such as Microsoft

Bing Maps [7] and Google Earth [4], store terabytes of satellite images, street maps

and terrain data. Advances in biotechnology have made it possible for some research

centers to generate terabytes of genomic sequencing data [38]. These are but a small

sample of an increasing number of application areas where massive amounts of data

are collected and stored. This availability of high-quality data presents opportunities

for new discoveries in scientific research or to make better business decisions. What

is needed are the tools to analyze these terabyte and petabyte-size data sets.

1

2

The development of algorithms able to process massive data sets efficiently is

challenging. There are two main problems to overcome. (1) Massive data sets often

do not fit in the computer’s main memory, forcing the algorithm to retrieve its data

from disk. This takes significantly longer than accessing data in main memory, and

the computation grinds to a halt. This problem can be overcome by accessing and

processing the data in large blocks. Traditional internal-memory algorithms do not

exhibit the necessary access locality to facilitate this. Hence, there is a need for

“I/O-efficient” algorithms designed specifically with access locality in mind, in order

to alleviate the I/O bottleneck. (2) While data set sizes increase rapidly in many

application areas, processor speeds no longer increase. Therefore, in order to keep

up with increasing input sizes, and continue to process these inputs in a reasonable

amount of time, it becomes necessary to utilize many processors simultaneously. This

requires the design of parallel algorithms that distribute the work over the available

processors.

The work developed in this thesis exploits parallelism and I/O-efficient techniques

to approach specific problems in computational geometry and graph theory. Due to

their fundamental nature these problems typically arise in decision support systems,

web modelling, and many more application areas.

Decision support systems usually work with data stored in archival data ware-

houses, with the number of records typically being in the order of billions, and

sophisticated data analysis is frequently performed through database and OLAP

queries [46]. For instance, a database of an international retailer (e.g., Wal-Mart)

might consist of all the customer transactions over the world in the course of a year,

and most meaningful queries over this data set are multi-criteria queries. An example

of such queries is to find all the stores having low profit and high expenses. Even if the

output of this query is a small number of records representing the sought stores, the

computation still involves large-scale database searches on terabytes or even petabytes

of data. In Chapters 4 and 5 we give algorithms for multi-criteria query processing

which use parallel computing and I/O-efficient algorithmic techniques to speed up

computation.

Web modelling applications perform large-scale data processing to study the topo-

logical properties of the World Wide Web. These applications analyze graphs built

3

from large-scale crawls with sizes that reach several hundreds of gigabytes to ter-

abytes. The resulting graphs are too large to fit in the main memory of a computer.

Nevertheless, it is very important to process these graphs as a whole, since informa-

tion may be lost if they are processed in fragments. For example, an important task

in these applications is to identify web communities [87], which are often approxi-

mated by cliques or “almost-cliques”. As a first approximation that is much easier

to compute, at least in internal memory, one may also consider strongly connected

components (SCC) to be communities. An SCC of a graph is a set of vertices such

that there is at least one directed path from every vertex to every other vertex in the

set. The SCCs are traditionally computed using a depth-first search (DFS) traversal.

However, in an external setting, in which the data is stored on disk, DFS performs ex-

tremely badly since it basically causes one disk access per computation step. On the

other hand, if we were to compute only the SCCs of memory-size subgraphs, it would

be unlikely that we find all SCCs. Specifically, if the graph contains SCCs that span

multiple partitions, these SCCs are not computed using this approach. This problem

affects large SCCs beyond the size of main memory but may also affect smaller SCCs

if the partition is chosen naively. In Chapter 7 we provide an external-memory SCC

algorithm that uses graph contraction to postpone running into this problem.

There exist a number of other application areas where the problems addressed in

this thesis commonly arise. These include DNA sequence analysis, social networks and

geographic information systems to name a few. Recent multiple sequence alignment

algorithms [137,138] operate on the DNA sequences’ de Bruijn graph and reduce the

problem to a traversal of an acyclic subgraph of this graph. Similar to web modelling,

a typical problem in social networks, is to find communities of people on graphs of

social networks. Geographic information systems often need to topologically sort large

graphs representing terrains. In all of these applications a challenge exists because of

the massiveness of the data. In Chapters 7 and 8 we provide I/O-efficient algorithms

for approaching these problems on large graphs.

1.2 Contributions

The main contributions of this thesis are:

4

Parallel and external-memory skyline computation. Computing the skyline

of a set of records is an important operation in applications involving multi-criteria

decision making. The goal is to retrieve all objects in a data set that have the prop-

erty that no other object is better according to all of a given set of criteria. This is a

well studied problem in computational geometry. A provably efficient sequential algo-

rithm in arbitrary dimensions and a parallel algorithm in three dimensions have been

obtained. More recently, the database community has concentrated on this problem,

particularly on fast sequential heuristics in internal memory (see Section 3.2 for de-

tails). In this thesis, we propose fast algorithms for parallel and external-memory

(I/O-efficient) skyline computations that can handle massive data sets. These al-

gorithms make use of well known techniques such as divide-and-conquer; we also

designed a specialized tree representation that can be used to efficiently exchange

R-trees between processors in a parallel machine. Our experiments confirm that the

algorithms can efficiently process data sets beyond the reach of existing algorithms

and can take advantage of parallel architectures to speed up the processing of large

amounts of data. This work has been published in [54].

External-memory strong connectivity. Computing the strongly connected com-

ponents of a directed graph is a fundamental problem in graph analysis. Given a

directed graph, a strongly connected component is a maximal subgraph in which

every vertex is reachable from every other vertex. There exist provably efficient

internal-memory strong connectivity algorithms; however, their performance deteri-

orates drastically once they have to process massive graphs. I/O-efficient solutions

have been proposed for special graph classes, such as directed planar graphs. How-

ever, no theoretically I/O-efficient solution is known for general directed graphs. In

this thesis we propose a new I/O-efficient algorithm for computing strongly connected

components of massive graphs. This algorithm uses graph contraction, which is the

most important technique for solving connectivity problems on undirected graphs

I/O-efficiently. Our experiments confirm that our algorithm can process data sets

beyond the reach of existing algorithms efficiently, which demonstrates that, at least

as a heuristic, graph contraction is a useful tool for solving connectivity problems on

directed graphs. The results have appeared in [55].

5

External-memory topological sorting. Topological sorting is a problem that

appears in applications that need to compute an ordering of a set of elements that

satisfies a set of application-specific constraints. More specifically, these constraints

are modelled by a graph whose vertices represent the elements and with an edge from

one vertex to another if the former has to precede the latter. The goal is to compute

an ordering of the vertices of the graph such that the tail of every edge precedes

its head in the ordering. Such an ordering is called a topological ordering and ex-

ists if and only if the graph does not contain directed cycles. Similar to computing

SCCs, topological sorting is a hard problem for massive directed graphs, whereas in

internal memory it can be solved efficiently using depth-first search or even simpler

methods. There is no theoretically I/O-efficient algorithm for topologically sorting

general directed graphs. However, I/O-efficient algorithms for this problem have been

obtained for special graph classes, such as planar graphs. In this thesis we propose an

I/O-efficient algorithm specifically designed for computing the topological ordering of

massive directed acyclic graphs. We did extensive experiments comparing it with dif-

ferent I/O-efficient algorithms based on existing sequential and parallel approaches.

The experimental evaluation confirms that our approach is able to solve the problem

on data sets beyond memory size in a reasonable amount of time and it also outper-

forms its competitors. All algorithms use well known I/O-efficient techniques, such

as Euler tour computation, list ranking and time-forward processing. This work has

been published in [16].

In this thesis we provide new, practically efficient solutions to a number of prob-

lems on massive data sets. A possibly even more important insight of the work on

I/O-efficient algorithms for massive graphs is that, at least as a basis for efficient

heuristic solutions, some techniques for solving problems on undirected graphs, such

as graph contraction, can also be used to solve problems on directed graphs.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we will address

the memory hierarchy that exists on modern computers and discuss the problems

with internal-memory algorithms that ignore the presence of such hierarchy. We will

also introduce the external memory (I/O) model of computation. From Chapter 3

6

onwards, the thesis can be logically divided into two parts, reflecting the nature of

the two types of problems being considered. In the first part, comprising Chap-

ters 3, 4 and 5, we present our work on skyline query computation. In the second

part, consisting of Chapters 6, 7 and 8, we discuss algorithms for directed graphs.

Chapter 3 provides background information on skyline algorithms. In Chapter 4

we introduce our parallel algorithm for skyline computation. In Chapter 5 we present

our external memory algorithm for the same problem. Both chapters also discuss the

experimental results we obtained using the algorithms discussed in these chapters.

The focus of the remaining chapters is on algorithms for massive directed graphs.

In Chapter 6 we give an introduction to the field of I/O-efficient graph algorithms,

including a description of algorithmic techniques used in later chapters. In Chapter 7

we design and implement an algorithm for computing strongly connected components

on massive directed graphs. In Chapter 8 we present our work on topological sorting

of massive directed acyclic graphs.

Chapter 9, summarizes the results of this thesis and provides an outlook on future

work.

Chapter 2

Memory Hierarchies and Their Impact on Algorithm Design

The purpose of this chapter is twofold. First, it discusses why algorithms designed

in standard computational models fail to take advantage of the memory hierarchies

present in modern computers. Second, it lays the groundwork for the design of I/O-

efficient algorithms designed specifically to minimize accesses to the slowest level of

the memory hierarchy: the disk(s). The emphasis is therefore not on the details of

computer architectures, but rather on general concepts relevant to our work.

2.1 Memory Hierarchies

Computational models abstract how real computers work in order to provide a basis

for designing and analyzing algorithms. The most popular model used for algorithm

design is the random access machine (RAM) model of computation. The RAM model

assumes that the computer is equipped with an infinitely large physical memory and

that any memory address can be accessed in constant time. While this has proven

useful as a tool for studying the computational complexity of a wide range of problems,

it fails to capture the real performance of algorithms on modern memory hierarchies.

The reason is that the memory systems of modern computers are composed of a

hierarchy of memory layers of different sizes and widely varying access costs. Typical

layers, arranged here from the bottom up, are external memory, internal memory,

L2 cache, L1 cache and registers. The largest and slowest memory is the external

memory, which is generally supported by hard disk(s) storing from gigabytes to ter-

abytes of data. The internal (main) memory is slower than cache memory but nowa-

days can reach sizes of several gigabytes and is several orders of magnitude faster than

external memory. The cache memory has a comparably small capacity but allows the

CPU to access data very fast; memory systems usually contain at least two levels of

cache: L1 and L2. The registers are integrated in the CPU and provide the fastest

data access. See Figure 2.1 for an illustration.

7

8

CPU Registers

L1
Cache

L2
Cache

Internal
Memory

External
Memory
(Disk)

Increasing capacity Faster access time

Figure 2.1: Memory hierarchy.

The bandwidths of the memory levels—the rates at which they can provide data

once it has been addressed—are fairly similar. The latencies in addressing data items,

on the other hand, differ by orders of magnitude and are the main reason for the high

access cost of memory levels far away from the CPU. For instance, disk access may

take several milliseconds, whereas memory access takes only nanoseconds, this is a

difference of about 106.

In order to amortize these latencies over more than one accessed data item, data

is transferred between adjacent layers in blocks. The higher the latency the bigger

the block size required to amortize it. This approach of amortizing access latencies

through blockwise data access is likely to persist at least in the near future. Flash

drives, for example, are an emerging alternative to disk-based storage and currently

have a much stronger dependence on blockwise data access than disk drives, with

differing block sizes for read and write operations and a write block size significantly

beyond the block sizes of current hard drives. See [15, 68] for more details on the

properties of flash memory devices.

2.2 Impact on Traditional Algorithms

For blockwise data transfer to be an effective amortization strategy, algorithms have

to ensure that most of the time data elements they access consecutively are stored in

the same block—otherwise each processed element still incurs the full access latency.

Traditional algorithms do not exhibit this access locality and they slow down by a

factor 104–106 once they need to access external memory.

9

Graph algorithms are particularly affected by this phenomenon because the vast

majority of these algorithms is based on graph exploration strategies, such as depth-

first search (DFS) and breadth-first search (BFS) [53]. During graph exploration it is

hard to avoid accessing data in a random fashion since there is no a priori knowledge

about the order in which the vertices are to be visited. For example, consider the

internal memory DFS algorithm [53]. DFS explores the vertices of a graph one vertex

at a time. When visiting a vertex, the algorithm needs to retrieve its adjacency list

to identify the vertex’s neighbors that it can visit next. This causes one random

access per vertex. To choose the neighbor to be visited next, it needs to inspect each

neighbor until it finds one that has not been visited before. This causes one random

access per edge. Thus, standard DFS does not take advantage of blockwise disk access

at all and breaks down on data beyond the size of main memory. Efforts to develop

improved DFS algorithms have met with limited success.

2.3 I/O-Efficient Algorithms

Given the performance limitations that traditional algorithms suffer when processing

large data sets, the use of computational models that capture the memory hierarchy

is very important for designing algorithms for massive data sets. One such model is

the I/O model (or external memory model) introduced by Aggarwal and Vitter [14]

which focuses on minimizing the block accesses to the by far slowest level of the

memory hierarchy: disk. The model assumes a single central processing unit (CPU)

and two levels of memory: internal memory and disk (i.e., external memory). The

CPU can only directly access data in the internal memory. The internal memory

has a limited capacity of M data items. The disk is conceptually infinitely large.

The disk is partitioned into blocks of B consecutive data items. The transfer of

data between internal memory and disk happens using I/O operations, each of which

transfers one block of data. A disk access is referred to as an I/O operation (I/O).

The measure of performance of an algorithm is the number of disk I/Os performed

during its execution.

It is shown in [14] that reading N elements stored contiguously on disk requires

scan(N) = �N/B� I/Os. The number of I/O operations required to sort N data items

is sort(N) = Θ(N
B
logM

B

N
B
) I/Os. For all realistic values of N , M and B, we have

10

scan(N) < sort(N) � N . Therefore, there is a significant performance difference

between an algorithm performing scan(N) or sort(N) I/Os and one performing N

I/Os. A large number of algorithms and data structures for the I/O model exist. For

instance, for comprehensive surveys of algorithms developed in the I/O model, refer

to [19, 101, 130, 131].

2.4 Algorithm Engineering

Despite the many theoretical results obtained in the I/O model, many of the de-

veloped algorithms are far too complex to be of practical value, both in terms of

their performance and of the difficulty to implement them. To approach this prob-

lem, much attention in the I/O-efficient algorithms community has been devoted to

the development of practically efficient algorithms. The development of such algo-

rithms has become a discipline in computer science of its own, known as algorithm

engineering [43, 114].

Algorithm engineering considers the process of developing an algorithm to be a

cycle consisting of four steps: design, analysis, implementation and experimental

evaluation. Specifically, the algorithm is initially designed and analyzed; the analysis

is used to obtain a performance prediction. Next, the algorithm is implemented and

experiments are performed using artificial and/or real-world data to evaluate the real

performance of the algorithm; the experimental evaluation might provide insights into

the limitations of the algorithm as a basis for the development of improved solutions.

The development of such an improved solution involves the same four steps of design,

analysis, implementation and experimental evaluation—the cycle continues.

A great deal of effort has focused already on engineering I/O-efficient algorithms

for large data sets. This work has been very successful and has led to very good

libraries of I/O-efficient algorithms. These include the transparent parallel I/O en-

vironment (TPIE) developed by Vengroff et al. [25, 129] and the standard template

library for extra large data sets (STXXL) by Dementiev et al. [59,60]. TPIE was the

first software project offering implementations of I/O-efficient algorithms and data

structures. It contains implementations of I/O-efficient primitives, such as scanning,

11

merging, sorting and distributing, together with data structures, such as an I/O-

efficient priority queue. Several projects have been developed based on TPIE, includ-

ing Geographic Information Systems (GIS) terrain applications [13,22]. STXXL offers

external-memory implementations of STL containers and algorithms that can process

huge volumes of data stored on disks. Recently, STXXL has been used in the engi-

neering of I/O-efficient algorithms for solving problems on massive graphs [18,61,118].

Chapter 3

Introduction to Skyline Computation

In this chapter, we discuss the skyline query problem and review a wide range of

skyline algorithms that have been developed before. Some of these algorithms which

are key to understanding our methods are discussed in more detail. We also introduce

the shared-nothing architecture, which is the platform targeted by our parallel skyline

algorithm. Finally, we summarize the contributions we make in this part of the thesis.

3.1 Overview

Motivated by rapidly increasing data volumes in many applications, database man-

agement systems are increasingly required to provide efficient methods for processing

large data sets. The analysis of large high-dimensional data sets require methods to

compute meaningful summaries of the data, as humans cannot make sense of massive

data sets without such summaries.

Data summarization techniques have been well studied in the database community.

Common techniques include finding the minimum or maximum value, computing the

average over a set of values and finding the median value. In recent years another

summarization method has emerged: the skyline query. In contrast to other methods

that consider each criterion (i.e., attribute) in isolation, the skyline computation

concerns itself with summarization of a set of criteria and, thus, is often useful in

multi-criteria decision making applications. However, sequential skyline algorithms

do not scale to massive data sets and, thus, provide poor response times on such data

sets. To address this problem we develop parallel and I/O-efficient algorithms for

computing the skyline of large data sets, in this part of the thesis. Next, we define

the skyline computation problem formally.

12

13

3.1.1 The Concept of Skyline Query

Given a collection S of database records, every record in S consists of a set of d

attributes. For a numerical attribute, we may consider a record r “better” than

another record r′ with respect to this attribute if r’s attribute value is less than or

greater than that of r′, depending on what this attribute represents. A skyline query

retrieves all records that have the property that no other record is better according

to all attributes.

More formally, the database records can be represented as a set S of points in

d-dimensional space. For a point p and all 1 ≤ i ≤ d, we denote its ith dimension

by xi(p). Point p1 is said to dominate point p2 if xi(p1) ≤ xi(p2), for all 1 ≤ i ≤ d,

and at least one of these inequalities is strict. A point p is a skyline point if it is

not dominated by any other point in S. The skyline of S, denoted sky(S), is the

collection of all its skyline points. A skyline query finds the skyline of the given

set S with respect to a given subset of dimensions. Without loss of generality, we

can assume that all point coordinates are non-negative, as we can move the origin

appropriately to ensure this without changing the set of points that make up the

skyline.

Consider for example a collection S of records representing hotels, and the at-

tributes we consider are the price of a room and the hotel’s distance to a conference

we plan to attend. We are interested in booking a cheap room close to the confer-

ence. If we find that hotel A is both cheaper and closer to the conference than another

hotel B, we would definitely choose the former over the latter; we say that hotel A

dominates hotel B. Ideally, we would like the choice to be the cheapest hotel that is

also the closest to the conference. However, there often exists a trade-off between the

criteria we aim to optimize, with no single record being best according to all crite-

ria. In such situations, we want to eliminate those hotels from consideration that are

worse according to all criteria than some other; the surviving hotels form the skyline

of S and are viable candidates to offer the user to choose from.

Figure 3.1 illustrates the previous example, where each point in two-dimensional

space corresponds to a hotel record. The room price of a hotel is represented by

its y-coordinate, and the x-coordinate specifies its distance to the conference. Hotels

p2, p3, p6, p7, p8 are dominated by hotel p1, while hotels p1, p4, p5 are not dominated by

14

p6

p5

p2
p3

p8

p4

p1

p7

x

y

Distance to conference (km)
0 0.5 1 1.5 2 2.5 3

40

80

160

200

P
ri

ce
($

)

120

Figure 3.1: A sample dataset and its skyline.

any other hotels. Hence, the latter form the skyline of this collection and constitute

the set of candidates we would consider for booking a room.

In the next two sections, we survey relevant work on skyline query algorithms.

We divide the review into work in centralized sequential environments and work in

distributed settings.

3.2 Skyline Queries in Centralized Environments

There has been a large body of work on skyline computation. The first to study this

problem where computational geometers, as discussed for instance in [111]. The set

of skyline points is also known as the Pareto frontier in the fields of economics [29,74]

and multi-objective optimization [67]. More recently, work in the database commu-

nity discuss applications of skyline computations in different application domains,

including multi-criteria decision making [39, 86, 109], spatial applications [120], wire-

less applications [47], mobile environments [80], etc.

A number of algorithms have been proposed in both, the computational geometry

and database literature. These algorithms can be roughly divided into two categories.

Algorithms in the first category compute the skyline directly without preprocessing;

algorithms in the second category first construct an efficient indexing structure on

the point set and then use this structure to answer skyline queries. Next, we review

the most significant algorithms in both categories.

15

3.2.1 Algorithms Without Preprocessing

Divide and conquer. In computational geometry, the points in the skyline are

called the maximal elements of the point set. Kung et al. [89] proposed an optimal

algorithm based on divide-and-conquer that finds all maximal elements. Since we

considered this algorithm as a candidate due to its good theoretical running time we

give a more detailed account of this algorithm in Section 3.2.4.1.

Block-nested-loops. In the database community, Borzsonyi et al. [39] were the

first to apply the maximal elements computation in the database context and in-

troduced the skyline operator. In their work they proposed the Block-Nested-Loops

(BNL) algorithm, which takes the straightforward approach of comparing every point

with every other point in the point set and adding it to the skyline if it is not dom-

inated by any other point. Specifically, BNL sequentially scans the input file con-

taining the point set and keeps a window of skyline candidates in memory. Initially

the first point is put into the window. Then each subsequent point p is compared to

every candidate in the window. If p is dominated by any of them, it is eliminated

and will not be visited again. If p dominates one or more candidates, it is inserted

into the window and all those candidates it dominates are removed from the window.

Otherwise, p is inserted into the window. Eventually the window may become full.

In this case, the rest of the input file is processed differently. As before, if a new

point is dominated by a window point, it is eliminated. However, if the new point is

not dominated, it is written to a temporary—overflow—disk file (dominated window

points are still being removed). The creation of the temporary file means another

iteration will be needed to process the overflow points in the file. On a subsequent

iteration, the previous temporary file is read as the input. Once a window point has

gone through a full “cycle” of comparisons (i.e., it has been compared against all

currently surviving points) it can be removed from the window and output as part of

the skyline.

Sort-filter skyline. BNL’s strategy incurs too many unnecessary comparisons be-

tween points that are not part of the skyline. This is because any skyline point has

16

to be compared against all the points in the window. To reduce the number of com-

parisons, Chomicki et al. [50] proposed the Sort-Filter Skyline (SFS) algorithm. SFS,

in an initial phase, sorts the point set according to decreasing values of a monotone

scoring function. This function guarantees that if point p dominates point q, then p

has a higher score than q. Afterwards, SFS proceeds as BNL, except now, when a

point is added to the window, it is known to be a skyline point. No point following

it can dominate it—this is guaranteed by the monotonicity of the scoring function.

Thus the point can be output as part of the skyline immediately. As in BNL, once the

window gets full, surviving input points must be written to a temporary disk file. If

a temporary file was created, another iteration is required. Unlike BNL, the window

can be cleared at the beginning of each iteration, since all points have been compared

against those skyline points. The temporary file is then used as the input for the

next iteration. The preferred scoring function is by volume
∏k

i=1 di(p) or entropy
∑k

i=1 ln di(p), where di(p) refers to the value of point p in dimension i. Overall, the

management of the window in SFS is simpler than in BNL and skyline points can be

quickly output. Experiments in [50] show that is SFS much faster than BNL, and

that it performs less dominance tests.

Linear elimination sort for skyline. As yet another form of BNL, Godfrey et

al. [71] introduced the Linear Elimination Sort for Skyline (LESS) algorithm. LESS

filters the points via a main-memory skyline-filter window, as does SFS and BNL.

Just as SFS, LESS initially sorts the points using a scoring function. However, LESS

incorporates two additions already in the sorting step: it integrates an elimination-

filter window in the first pass of a standard external merge-sort routine to eliminate

some dominated points quickly; and it combines the last merge pass of the sorting

algorithm with the first skyline-filter pass.

Sort and limit skyline algorithm. Bartolini et al. [30, 31] also extended the

work on BNL and SFS and argued that for suitably chosen scoring functions, it is

indeed possible to compute the skyline by looking only at a subset of the sorted

input point set. Based on this notion, they proposed the Sort and Limit Skyline

algorithm (SaLSa). SaLSa relies on scoring functions that can guarantee that all

data points beyond a certain point, the stop point, are dominated by such point.

17

This way, one can stop fetching points from the input point set, effectively limiting

the number of points to be read. Two main factors determine the actual performance

of the algorithm: the choice of the scoring function, which might severely influence

the number of points to be read, and the strategy for choosing the stop point, which is

used to earlier terminate reading points. In their work, they evaluate various scoring

functions and according to their study pre-sorting by minimum-coordinate achieves

the best performance for their strategy.

External memory skyline query algorithm. More recently, Gui et al. [75] pre-

sented a simple variant of BNL. This approach keeps the points in the main-memory

window sorted by volume (product of their coordinates), in an attempt to reduce

the cost of internal memory computation. The intuition is that the points with high

possibility to dominate others are on top of the window, and will be compared first,

thus reducing the number of comparisons. Nevertheless, since the window has to be

kept ordered, the computational cost is still high, particularly for large skylines.

Bitmap. Tan et al. [124] worked on a different approach and presented a novel

algorithm for computing skyline points, named Bitmap. The main goal was to output

the first skyline points very quickly. To this end, the algorithm maps each point to a

bit string, and the skyline is computed using efficient bit operations. Although this

method can produce the first skyline points very quickly, it has a major drawback. If

the number of distinct values is high for some dimensions, the bitmaps needed would

consume huge amounts of memory. Thus, it is appropriate only when the number of

possible values is small in each dimension.

3.2.2 Index-based Algorithms

The second group of skyline algorithms exploits special index structures. The main

goal of index-based algorithms is to produce skyline points progressively—initial re-

sults should be output almost instantly and the output size should gradually increase.

Index. In the same paper where they introduced their bitmap approach, Tan et

al. [124] also propose the Index algorithm. This algorithm partitions the d-dimensional

point set into d lists, one for each dimension. A point p is assigned to the ith

18

(1 ≤ i ≤ d) list if and only if its coordinate on the ith axis is the minimum of

its coordinates. Each list is sorted in ascending order of the minimum coordinate

(minC, for short) and indexed by a B+-tree along that dimension. The lists are then

scanned in a batched form; a batch in the ith list consists of points that have the

same ith coordinate (i.e., minC). Initially, the algorithm loads the first batch of each

list, and processes the one with the minimum minC. Processing a batch involves (a)

computing the skyline of the points inside the batch, and (b) among the computed

points, adding the ones not dominated by any skyline points already found, into the

skyline list. After processing a batch, the algorithm then chooses from the unpro-

cessed batches with the minimal minC. The algorithm terminates when the current

minC is larger than the maximal coordinate of the previously found skyline point.

This technique can return skyline points quickly at the top of the lists. However, the

lists built for a query with d dimensions cannot be used to solve queries on only a

subset of these dimensions.

Nearest-neighbor. Kossmann et al. [86] introduced the Nearest-Neighbor (NN)

algorithm. In NN, the point set is indexed by an R-tree. A distance function of the

points to the origin of the coordinate system (e.g., L1-distance norm) is also provided

to the algorithm. NN iteratively computes a nearest neighbour point to the origin in a

given data space region; the idea is to enforce the computed nearest neighbour points

to be part of skyline. The algorithm starts by performing a nearest-neighbor search

on the R-tree, to find the point with the minimum distance from the origin; it is shown

in [86] that the first nearest neighbor is part of the skyline. The resulting nearest-

neighbor point also prescribes a region within which all points are dominated by it;

the region is pruned from further consideration. The rest of the data set is partitioned

based on the nearest-neighbor point, and the different parts are inserted into a to-do

list for subsequent processing. Then NN continues by removing a part from the to-do

list and processing it recursively, until the list is empty. The experiments in [86] show

that NN outperforms previous skyline algorithms in terms of overall performance and

general applicability independently of the characteristics of the point set. However,

NN has some shortcomings, such as need for duplicate elimination—different parts

may overlap and the overlapping region might cause duplicates in the skyline result—,

19

multiple R-tree node visits, and huge space overhead.

Branch-and-bound skyline. Motivated by the shortcomings of NN, Papadias et

al. proposed the Branch-and-Bound skyline (BBS) algorithm in [108, 109]. BBS,

like NN, is based on the nearest-neighbor search technique on the data points, but

(unlike NN) visits an R-tree node only if its subtree contributes a skyline point. In

Section 3.2.4.2 we provide a detailed explanation of this algorithm.

ZSearch. Recently, Lee et al. [91] utilized the close relationship between the Z-order

space filling curve and skyline processing to index data points and efficiently answer

skyline queries. This strategy, named ZSearch, first encodes the points in Z-order—

points are assigned Z-addresses—and then constructs a novel variant of the B+-tree

called ZBtree. With the points organized in a ZBtree, the skyline search is conducted

over the index. Based on Z-addresses, the Z-order curve provides two important

properties: (a) monotone order (dominating points are always accessed before their

dominated points and, (b) clustering (points ordered by Z-addresses are naturally

clustered as regions). These properties facilitate efficient dominance comparisons

and space pruning. In their paper they also introduce a suite of algorithms which

incrementally maintain skyline results in the presence of changes (insert, delete and

update).

3.2.3 Extensions of Skyline Computations

There has also been much work devoted to extending research in skyline compu-

tation to new problems and domains. For example, Chan et al. [45] and Yuan et

al. [136] extended the computation of skylines in different directions. The former

paper proposed a metric that ranks the points based on how often they are part of

the skyline in different subspaces; if the skyline is too big, which is often the case

in higher-dimensional space, only the k highest-ranked points are reported. This is

reasonable, since a very large skyline provides little more (possibly less) information

than a representative sample of skyline points. The paper by Yuan et al. [136] focused

on answering skyline queries over the whole data cube defined by a given subset of

dimensions.

20

As yet another variant of the traditional skyline query, Sharifzadeh et al. [120]

studied the Spatial Skyline Query (SSQ) processing problem. An SSQ, consisting

of multiple query points, retrieves data points that are not farther than any other

data points, from all query points. More specifically, given a set of data points

P and a set of query points Q in a d-dimensional space, an SSQ retrieves those

points of P which are not dominated by any other point in P considering a set of

spatial derived attributes; for each data point, these attributes are its distances to

query points in Q. This computation is relevant for applications such as geographic

information systems where the managed data is inherently spatial in nature. [120]

provides algorithms for computing SSQs. These methods use the Voronoi diagram,

convex hull and Delaunay graph of the data points to find the skyline. The main

intuition behind their algorithms is in exploiting the geometric properties of the SSQ

problem space to avoid the full examination of all the point pairs in P and Q.

3.2.4 Detailed Discussion of Skyline Algorithms

The skyline algorithms we propose use the divide-and-conquer algorithm by Kung

et al. [89] and the branch-and-bound algorithm by Papadias et al. [108] as building

blocks. Therefore, we discuss these two algorithms in more detail in the next sections.

3.2.4.1 Divide and Conquer (DC)

The divide-and-conquer algorithm of [89] performs a double recursion on the number

of dimensions and the size of the point set. Given a d-dimensional point set S, the

first step is to find the median coordinate med(d) in the dth dimension. The point

set S is then divided into two sets L and R around this coordinate, and the skylines

of L and R are found recursively. The points in sky(L) are easily seen to belong to

sky(S), while a point in sky(R) belongs to sky(S) if and only if it is not dominated

by a point in sky(L). Since every point in R has a greater xd-coordinate than every

point in L, a point in sky(R) is dominated by a point in sky(L) in all d dimensions

if and only if this is the case in the first d − 1 dimensions. This is the basis for the

following recursive filtering procedure that removes all points in sky(R) dominated

by points in sky(L); see Figure 3.2.

First, the median med(d − 1) of the xd−1-coordinates of all points in L is found,

21

Lb

d

d − 1

medd

m
ed

d
−

1

Lt Rt

Rb

Figure 3.2: Recursive filtering in DC.

and L and R are partitioned around med(d− 1) into sets Lb and Lt, and Rb and Rt,

respectively. (Note that the split of R is not necessarily even.) It can be observed

that no point in Rb can be dominated by a point in Lt. Hence, it suffices to recursively

filter all points in Rb against the points in Lb, and all points in Rt against the points

in Lb and Lt. For the filtering of the points in Rt against the points in Lb, it can

be observed that every point in Rt has greater xd−1- and xd-coordinates than every

point in Lb. Hence, this filtering step has to take only the first d− 2 dimensions into

account. The recursion in this procedure stops as soon as one of the two involved

point sets has size at most one or the number of relevant dimensions has reduced to

two, at which point the computation can be finished in linear time without recursing

any further.

DC has a worst-case running time of O(N logd−2N) and takes expected linear

time on a random point set, where N is the the number of points in S. In practice,

the query time can be very high, as shown in Figure 3.4a.

3.2.4.2 Branch-and-Bound Skyline (BBS)

BBS [108] is an index-based algorithm that finds the skyline points using an R-Tree

index [35,76]. An R-tree is a version of a B-tree designed to index geometric objects

in two and higher dimensions. The objects are stored in the leaves of the tree; every

internal node stores the smallest axis-parallel box that contains all objects in the

leaves that are descendants of this node. This box is called the minimum bounding box

(MBB) of the node. An MBB is represented by the two endpoints of its main diagonal.

For 1 ≤ i ≤ d, let xli(v) denote the minimum of the ith coordinates of all points in

v’s subtree, and let xui (v) denote their maximum. Then, the MBB is represented

22

by the points l(v) = (xl1(v), x
l
2(v), . . . , x

l
d(v)) and u(v) = (xu1(v), x

u
2(v), . . . , x

u
d(v)).

Throughout the remainder of this part of the thesis, nodes and their bounding boxes

will be considered one and the same; it is also assumed that every leaf of the R-

tree stores only one object. Note that, while the MBBs along any root-leaf path

are properly nested, the MBBs of sibling nodes are not necessarily disjoint. This is

true even if the stored objects are points, unless the subsets of points to be stored at

the leaves are carefully chosen using a recursive space partition. One way to obtain

such a partition is by splitting the dimensions in a round-robin fashion. The tree

obtained using this procedure, when applied to the point set in Figure 3.1, is shown

in Figure 3.3 and is similar to a k-d-tree [36] for this point set.

p6

p5

p2
p3

p8

p4
p1

p7

x

y

N1

N2

N3
N4N6

N5

N7

(a) Bounding boxes

N1 N2 N3 N4

p5 p6 p7 p8p1 p2 p3 p4

N1 N2 N3 N4

N5 N6

N7N5 N6

(b) R-tree

Figure 3.3: The R-tree for the point set from Figure 3.1.

BBS incrementally constructs a list, L, of skyline points it has identified; initially,

L = ∅. The skyline points are found using a traversal of the R-tree. When a node v is

inspected, all points in L are checked to decide whether one of them dominates (the

bottom-left corner1) of v. If so, no point in v’s subtree can be a skyline point, and

the children of v do not need to be visited; the subtree below v is pruned. Otherwise,

if v is a leaf, the point stored at v is added to L; if v is not a leaf, its children are

visited recursively.

In order to avoid adding a non-skyline point to L (and in order to prune dominated

subtrees as quickly as possible), it is necessary to ensure that all skyline points that

can dominate a node or point p are added to L before inspecting p. This is achieved

by inspecting all non-pruned nodes in order of increasing distance (of their bottom-

left corners) from the origin. (Recall that all points have positive coordinates.) To

1This terminology borrowed from two dimensions is used throughout the thesis to denote the
corner closest to the origin in any number of dimensions.

23

implement this, a priority queue Q is used. Initially, Q holds only the root of the tree,

and its priority is equal to its distance from the origin. Then, while Q is non-empty,

the node v with minimum priority is retrieved. If v is dominated by a point in L, the

processing of v is finished. Otherwise, if v is a leaf, the point stored at v is added

to L; if v is not a leaf, each of its children is tested whether it is dominated by a

point in L. Each child that is not dominated is added to Q, with priority equal to its

distance from the origin.

Papadias et al. [108] showed that BBS accesses every node at most once and visits

a node only if its subtree contains at least one skyline point. They also presented

experimental results that demonstrate that the performance of BBS mainly depends

on the size of the computed skyline and the dimensionality of the data. This last

limitation is inherited from the used index structure, the R-tree. The performance of

R-trees does not scale well with the number of dimensions; in practice, however, only

a moderate number of dimensions are really relevant [86]. For 2–6 dimensions, the

pruning strategy of BBS is highly effective because in this case usually only a small

percentage of the given points are part of the skyline. Figure 3.4b shows query times

(not including construction of the R-tree) from sequential experiments with different

data set sizes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

25K 50K 75K 100K

T
im

e
(s

ec
s)

n

2D
3D
4D
5D
6D

(a) DC

 0

 0.005

 0.01

 0.015

 0.02

 0.025

25K 50K 75K 100K

T
im

e
(s

ec
s)

n

2D
3D
4D
5D
6D

(b) BBS

Figure 3.4: Sequential query times for DC and BBS. Note that the query time for
BBS does not include the time to construct the R-tree.

24

3.3 Skyline Queries in Distributed Environments

Most of the previous work on skyline queries has focused on the development of

efficient centralized sequential algorithms that work with data sets that fit in internal

memory. Since, however, the data sets to be processed in real-world applications are

often of considerable size, there is a need for improved query performance through the

use of algorithms that distribute the computation over multiple processing units. For

example, in this thesis, we speed up skyline computation by using a shared-nothing

multi-processor parallel machine.

One of the earliest work on parallel skyline algorithms is the one by Dehne et

al. [57], which proposed an optimal coarse-grained parallel algorithm for comput-

ing skylines in three dimensions; however, their approach does not seem to lead to

practical algorithms for higher-dimensional point sets.

More recently, there has been a growing interest in parallel skyline computa-

tions [54, 69, 110, 128] and distributed skyline computations [133–135]. The primary

distinction within parallel and distributed skyline computation is how tightly-coupled

the individual processing nodes are. The nodes of a distributed system are physically

distributed, i.e., loosely coupled; Subsection 3.3.1 reviews some of the most repre-

sentative work on skyline computation in this environment. Parallel systems, on the

other hand, are tightly coupled—typically in the same box; Subsection 3.3.2 presents

some relevant work in this setting.

3.3.1 Skyline Computation in Peer-to-Peer Networks

Distributed skyline algorithm. One of the earlier works on distributed skyline

computation is the one by Wu et al. [135]. They proposed the Distributed Skyline

(DSL) query algorithm that works on a peer-to-peer (P2P) Content Addressable Net-

work (CAN) [113]. DSL relies on space division techniques to create grid partitions,

which are then assigned to the participating servers. Thus, each server is responsi-

ble for a disjoint partition. An advantage of the grid partitioning technique is that

some partitions may not need to be examined when the query is executed, this way

avoiding accessing servers not containing skyline points. DSL focuses on computing

constrained skyline queries that are posed within a query range, and consequently

25

its skyline search method has been designed for such queries. In contrast to our

proposed approach, where all servers process the skyline query simultaneously, in

DSL each server starts the computation on its local data only after receiving from

all servers whose points can dominate its points, their previously computed results.

Overall, the focus of this distributed approach is on minimizing the communication

cost. However, processors being idle lead to poor balancing. The sequential depen-

dencies of one processor on other processors’ results also leads to poor parallelism.

Skyline search space partitioning. Wang et al. [133] proposed the Skyline Search

Space Partitioning (SSP) algorithm, which is based on a P2P BATON [81] overlay

network. SSP employs the z-curve method for mapping the multidimensional data

space to one-dimensional values, that can then be assigned to peers. In this approach,

however, a load balancing problem arises. The data access of a skyline query is likely

to be skewed towards the part of the space that contains the skyline. Hence, a small

number of peers might have to process almost every query since their allocated space

is close to or contains part of the skyline. To improve the algorithm’s performance,

the authors propose some extensions, for instance, allocating relatively smaller space

to peers responsible for these regions (by basically partitioning the space and dividing

a hyper-rectangular region into smaller, equally loaded, regions). Nevertheless, many

servers that do not contribute to the skyline result set are still queried. In [134] the

authors extended the previous work by proposing a framework that can be adapted

to other P2P network systems.

Both studies above are based on P2P environments and focus on reducing commu-

nication by avoiding some nodes to be examined when a query is executed. They do

this by using space partitioning techniques. However, in the case of skyline compu-

tation in parallel, where all partitions are examined simultaneously, the performance

of these techniques degrades. The reason is that many partitions do not contribute

to the global skyline result (or their contribution is negligible), resulting in poor load

balancing among computational nodes and thus low parallelism.

26

3.3.2 Skyline Computation in Parallel

Parallel distributed skyline. There has been follow-up work after the parallel

algorithm presented in Chapter 4 was published in [54]. Cui et al. [56] proposed

the PaDSkyline (Parallel Distributed Skyline) algorithm for computing constrained

skyline queries (a constraint on a dimension is a range specifying the user’s interest).

PaDSkyline works in an environment consisting of different servers which are located

at geographically scattered sites and connected via internet. Despite working in a

distributed setting the algorithm exhibits some form of parallelism. PaDSkyline par-

titions all relevant sites into incomparable groups such that the skyline computation

in any one group does not depend or affect the computation in any other group.

Hence, the skyline computation can be executed simultaneously—in parallel—among

all those site groups. On the other hand, within each group, the skyline computation

is executed sequentially among the sites; this intra-group computation involves com-

puting the skyline of each site’s local data, propagating intermediate results between

sites and designating a group coordinator responsible for merging the local results.

In addition, within each group, the algorithm optimizes the skyline computation by

selecting multiple filtering points based on their overall dominating potential from

the skyline of the local data. These points are then sent to other sites, where they

help identify more dominated points. Similarly to the peer-to-peer approaches, the

strength of this algorithm is that it minimizes the network traffic, in this case by

early filtering of dominated points. Nevertheless, load balance is still an issue since,

for instance, sites having overlapping partitions are not processed in parallel.

Angle-based space partitioning. Other approaches mainly focus on ways to effi-

ciently partition the input data. For instance, Vlachou et al. [132] proposed a parallel

skyline algorithm which uses the hyperspherical coordinates of the points to partition

the data. The algorithm initially distributes the points to individual nodes, where a

local skyline query on the assigned workload is executed, followed by the computation

of the final skyline from the local skyline sets by a coordinator node. The key idea in

this strategy is the computation of smaller local skylines, as this reduces the amount

of data to be processed by the coordinator. To this end, the data set is initially par-

titioned using the hyperspherical coordinates of the points; the intuition behind this

27

approach is that the skyline points are equally spread to all partitions. More specifi-

cally, the algorithm maps the d dimensions into hyperspherical coordinates. Then it

divides the data points into N partitions (N being the number of available nodes)

using angular coordinates. As a result, all points having similar angular coordinates

fall in the same partition. By doing this, the average pruning power of points within

a partition is increased, thus reducing per-node processing times. Despite the advan-

tage of computing smaller local skylines, the scheme has some limitations. Firstly,

no provisions are made for the case when the total size of the local skylines is too

big to be efficiently merged by the coordinator node (this is a risk of a bottleneck).

Secondly, the reduction of the local skyline sizes is achieved at a more costly way of

transforming and distributing the data points, all of which is not reported.

Adaptive distributed skyline computation algorithm. More recently, Valka-

nas et al. [128] introduced the Adaptive Distributed Skyline Computation (ADISC)

algorithm for shared-nothing architectures. ADISC runs both in parallel and cas-

cading (sequential) mode. Initially, the coordinator processor partitions the data set

using a grid scheme and assigns a partition to each processor. Then each processor

indexes its local copy with an R-tree and reports back arbitrary representative points.

Partitions dominated by representatives are excluded from further consideration (they

do not contribute to the final skyline). The computation proceeds with the non-

dominated partitions. If in cascading mode, the coordinator determines the sequence

in which the data propagates among the processors and informs them appropriately;

for example, if processor A contains data that processor B can use for pruning away

points in its assigned partition, A sends its data to B. Each processor begins com-

putations only after receiving data from all its predecessors in the sequence. In full

parallel mode, processors compute the skyline of their own partition simultaneously,

and then they send their local results to the coordinator; the coordinator merges the

results and computes the global skyline. The algorithm also incorporates a set of

optimizations. For example, it exploits the representative points even further to: a)

improve parallelism while maintaining progressiveness and, b) remove dependencies

between partitions which, as a side effect, reduces network traffic and minimizes the

workload of the coordinator. According to [128], this strategy is scalable in terms

28

of processors and data set size, and is able to handle diverse preferences (e.g., min,

max) imposed on attributes.

Skyline computation on other parallel architectures. The skyline computa-

tion has also been extended to other parallel architectures, including multi-core [110]

and multi-disk environments [69].

Park et al. [110] introduced an algorithm named PSkyline for multi-core architec-

tures. These architectures combine multiple independent cores sharing the computer’s

internal memory; multi-core architectures offer an added advantage of negligible or

low overhead for communications between parallel threads. The intuition behind

PSkyline is that the cost of the skyline computation depends heavily on the number

of comparisons between points, called dominance tests, which involve only integer or

floating-point number comparisons. Since a large number of dominance tests can be

performed independently, skyline computation has a good potential to exploit these

architectures. PSkyline is based on the divide-and-conquer strategy. Specifically,

the algorithm divides the point set into multiple subsets, distributes the subsets to

threads and computes the local skyline of each thread separately. Then, it merges

local skylines into a global skyline in parallel. PSkyline optimizes thread utilization

for both the local computation and the merging process. PSkyline, among the points

assigned to each thread, prunes out some of non-skyline points that cannot be con-

tained in the final skyline. In addition, it aggregates the local results, and returns

the final skyline by maximizing thread-level parallelism.

Gao et al. [69] proposed an algorithm for a multi-disk architecture. This archi-

tecture consists of a single-processor machine with several disks attached to it. In

this approach, the point set is distributed over multiple disks; parallel R-trees [83]

are used to index the points. Similarly to BBS, the skyline computation also follows

the best-first nearest neighbor search paradigm. The main idea is to exploit sufficient

parallelism by visiting all relevant R-tree nodes, in multiple disks, simultaneously

during the traversal. Additionally, [69] provides several dominance-based pruning op-

timizations to discard entries—MBBs of R-tree nodes—that are dominated by other

points (or other MBBs) from the computation.

Despite the similarities of these two parallel algorithms with our own work, in

29

that they attempt to use multiple processing units, our work mainly differs from

them in that we assume a shared-nothing architecture in contrast with the shared-

memory and shared-disk architecture respectively. The problem with using these

strategies in shared-nothing environment is, that they employ a very fine-grained

parallelism—data is transferred very frequently among processors after small amount

of computation—, which is not suitable for shared-nothing systems. For example, if

the techniques used in these algorithms were translated to a shared-nothing setting

(by replacing the updates done in main memory with messages passed around by the

processors), then the inter-processor communication would outweigh the benefit of

parallel computation. This observation has been already noted by the authors in [110].

Shared-nothing algorithms are (almost) always coarse-grained—data is communicated

infrequently after large amounts of computation.

In the next section we present the details of the parallel architecture we consider.

3.4 Shared-Nothing Clusters

In recent years, there has been a trend in parallel computing to move away from

expensive specialized supercomputers to cheaper general purpose clusters made from

single or multi-processor personal computers (PC) or workstations. The nodes in a

cluster may share memory or disk arrays. If there is neither memory nor disks shared

among nodes in clusters, they are called shared-nothing clusters, such as the popular,

low-cost, Beowulf-style clusters [1] consisting of standard PCs connected via a data

switch without any expensive shared disk array. Communication between the nodes

of a shared-nothing cluster happens through explicit exchange of messages. Clusters

usually host an open-source Unix-like operating system, such as BSD, GNU/Linux,

or Solaris. Figure 3.5 shows a shared-nothing cluster computer architecture.

The cluster’s middleware consists of tools or interfaces which hide the various

hardware and networks (e.g., Ethernet, Myrinet, InfiniBand) from the applications

and provide a standard way to share data among nodes. One common piece of

middleware is the Message Passing Interface (MPI) [6], which is a standard interface

for message passing implementations among processors in a cluster. In a shared-

nothing architecture, MPI sends messages by using standard network protocols, such

as TCP/IP. MPI is the most widely used message passing framework for parallel

30

proc mem

nic disk

proc mem

nic disk

proc mem

nic disk

proc mem

nic disk

network or switch

P0 P1 Pp-1

Figure 3.5: A Shared-nothing cluster.

computing across the industry.

3.5 Contributions

Large data sets are becoming ubiquitous; thus, parallelizing the skyline computation

and eliminating the I/O bottleneck in large-scale computations is increasingly im-

portant in order to retrieve the results in a reasonable amount of time. The bulk

of existing skyline algorithms are efficient in a sequential setting, using a single pro-

cessor, and are not able to efficiently process data sets beyond the capacity of main

memory. To approach this problem, a number of algorithms that distribute the com-

putation among multiple computational nodes have been proposed, as discussed in

Section 3.3. Our algorithm is one of the earliest to tackle the problem on a shared-

nothing parallel machine. There has been follow-up work to our approach, which we

also discussed in Section 3.3. However, some of the proposed algorithms work on

different architectures than ours and their techniques, if implemented in a parallel

setting, lead to workload unbalance and/or excessive inter-processor communication.

Other parallel methods focus mainly on partitioning the point set to produce smaller

local results, but ignore the cost of computing these partitions.

Our contribution consists of parallel and I/O-efficient algorithms for computing

skylines. For the parallel algorithm, we determined through experimentation the

speed-up obtained on a distributed-memory cluster. The results we obtained show

that our parallel algorithm can be used effectively to speed up the computation of

skylines of large data sets. We also investigated the effect of increasing data di-

mensionality and input size on the performance of the algorithm. Accordingly, the

31

algorithm shows good scalability with increasing data set sizes and number of pro-

cessors. The parallel algorithm (as well as the I/O-efficient algorithms) is based on

the branch-and-bound skyline algorithm by Papadias et al. [108]. We investigated

the challenges posed by the original algorithm and introduced new ideas aiming to

eliminate its I/O bottleneck. The external-memory algorithms can handle data sets

beyond the main memory size and can potentially replace the sequential algorithm

running on each processor in the parallel approach. We introduce our parallel skyline

algorithm in Chapter 4, and the I/O-efficient algorithms in Chapter 5.

Chapter 4

Parallel Skyline Computation

In this chapter, we describe in detail the design and evaluation of a parallel algorithm

for skyline computation. Our approach is to distribute the point set to individual

processors, where efficient sequential algorithms can be used to independently calcu-

late the skylines of the workload assigned to the processors, followed by a parallel

construction of the final skyline from the local skyline sets. We also discuss engi-

neering aspects of the algorithm’s implementation, in particular a pointerless R-tree

representation that can be easily exchanged between processors. Finally, we present

our experimental evaluation on synthetic and real-world data sets. The results we

obtained demonstrate that parallel computing can be used effectively to speed up the

computation of skylines of large data sets of a moderate number of dimensions, which

is what is relevant in practice [86].

4.1 Overview

The computational environment targeted by our algorithm is a shared-nothing parallel

architecture consisting of p independent processors P0, P1, . . . , Pp−1 as discussed in

Section 3.4. The algorithm takes as input the point set S and a parameter k ≤ n/p,

and needs to output the entire skyline if |sky(S)| ≤ k, or a sample L ⊆ sky(S) of k

skyline points if |sky(S)| > k. The assumption that no more than n/p skyline points

are to be reported is reasonable, as p is usually small compared to n, and any skyline

or skyline sample of size n/p or bigger can normally be considered to be excessively

large to be useful in practice. Moreover, the only place where the algorithm relies

on this assumption is in the final step when the entire skyline or skyline sample is

collected on processor P0 to be output.

The algorithm can be outlined as follows: (1) The point set is partitioned into

subsets of equal size, each of which is assigned to a different processor. (2) Each

processor computes the skyline of its assigned set of points. (3) The processors

32

33

collectively filter the remaining points against each other’s local skylines, eliminating

the points in each processor’s subset that are dominated by points assigned to other

processors. This collective filtering step can be implemented using a constant number

of global communication rounds in all but extremely rare scenarios. For these rare

cases, the algorithm includes an alternate version of the collective filtering step that

requires between 1 and p communication rounds, depending on the total size of the

local skylines and the size of the requested skyline sample.

The discussion of the algorithm is divided into several parts. Section 4.2 starts

by giving an overview of the algorithm. Subsequent sections provide further details

of it. In particular, Section 4.2.1 discusses the impact of the initial distribution of

points among the processors on the performance of the algorithm and argues that a

random distribution of the points over the processors is likely to yield good perfor-

mance (which is confirmed by the experimental results discussed in Section 4.5). Some

follow-up work [132] looked at this data distribution problem and proposed a different

distribution that leads to smaller local skylines and, thus, has the potential to speed

up the collective filtering step; however, that work did not investigate the computa-

tional overhead of producing this distribution. Thus, overall is not clear whether their

approach actually leads to better performance. Sections 4.2.2 and 4.2.3 explore the

two main phases of our algorithm. Section 4.3 discusses a pointerless R-tree repre-

sentation that allows the construction of an R-tree over a point set to be parallelized.

Section 4.4 presents details of the algorithm’s implementation. Finally, Section 4.5

examines the results obtained with the algorithm’s experimental evaluation.

4.2 Parallel Skyline Algorithm

This section describes our skyline algorithm (see Algorithm 1), referred to throughout

the rest of the chapter as Parallel-Skyline. The algorithm exploits that, for

any decomposition of the input point set S into subsets S0, S1, . . . , Sp−1, we have

sky(S) = sky(sky(S0) ∪ sky(S1) ∪ · · · ∪ sky(Sp−1)) (see Figure 4.1). Thus, we can

compute the skyline of S in two phases. In the first phase, we assign n/p points to

each processor, and all processors independently compute the skylines of their local

point sets. In the second phase, the processors collectively compute the skyline of the

set of these local skyline points. The size of this set is usually substantially reduced

34

Algorithm 1: Parallel-Skyline(S0, S1, . . . , Sp−1, k)

Input: The point set S = S0 ∪ S1 ∪ . . . ∪ Sp−1; set Si is stored on processor Pi;
k is the desired number of skyline points.

Output: A set L of min(k, |sky(S)|) skyline points.

// 1st phase: Data partitioning and local computation

1 for all 0 ≤ i ≤ p− 1 do in parallel
2 Pi builds an R-tree R(Si) for Si;
3 Pi runs BBS on R(Si) to compute sky(Si). Let S

′
i = sky(Si);

// 2nd phase: Computation of the final skyline

4 Compute the set L ⊆ sky(S) and collect it in processor P0 by calling
Global-Skyline(S ′

0, S
′
1, . . . , S

′
p−1, k);

5 return a set L ⊆ sky(S) of size min(k, |sky(S)|);

compared to the original input set S.

While the first phase as such is straightforward (Section 4.2.2), the distribution of

the points among the processors can have a tremendous impact on the performance

of the second phase, as we discuss in Section 4.2.1. In particular, it is desirable to

ensure that the total size of the local skylines is as small as possible, as this reduces

the amount of data to be processed in the second phase. In fact, the second phase of

the algorithm differs depending on whether the union, S ′, of the local skylines fits in

the memory of a single processor; see Algorithm 2.

If |S ′| ≤ n/p, each processor Pi receives a copy of S ′ and then eliminates all

points in sky(Si) that are dominated by points in S ′. The points in sky(Si) that

are not eliminated are the points in Si that belong to sky(S). Since copying S ′

to all processors requires one global communication round, and filtering the points

in sky(Si) requires only local computation on processor Pi, computing sky(S) from

the local skylines of all processors takes one communication round in this case.

If |S ′| > n/p, no processor has sufficient memory to store S ′. In this case, a

collective filtering approach is used that may take up to �p|S ′|/n� communication

rounds, each of which determines for a subset of each processor’s local skyline points

whether they belong to sky(S). These two variants of the second phase are discussed

in more detail in Section 4.2.3.

35

p1

p2

p3

p4

p5

p6

p7

p8

S

p3

p5

p8

p1

p2

p4

p6

p7

S0

S2

S1

sky(S0)

sky(S1)

sky((S2)

p1

p3

p4

p5

p6

sky(S)

sky(S0) ∪ sky(S1) ∪ sky(S2)

Figure 4.1: Illustration of the two phases of Algorithm 1 for three processors. First
the point set is distributed over the processors. Then each processor Pi computes
the skyline of its local point set Si. Finally, sky(S) is computed as the skyline of
sky(S0) ∪ sky(S1) ∪ sky(S2).

4.2.1 Data Distribution

One aspect affecting the efficiency of Parallel-Skyline is the partitioning method

used for distributing the input data set over the processors. More specifically, since the

algorithm relies on the union of the local skylines being substantially smaller than the

original point set, the assignment of points to the processors can have a tremendous

impact on its performance. Consider, for example, the point set in Figure 4.2. If the

points are assigned to processors as in Figure 4.2(a), the union of the local skylines

is the whole point set. If, on the other hand, every processor receives one of the

bottom-left four points, as shown in Figure 4.2(b), the union of the local skylines is

the final skyline.

The method used to partition the point sets should ensure that every processor

does about the same amount of work in the first phase of the algorithm and that this

phase eliminates as many non-skyline points as possible, in order to reduce the cost

of the second phase. The cost of the local computation on each processor depends on

36

S0

S1

S2

S3

(a) Bad partition

S0

S1

S2

S3

(b) Good partition

Figure 4.2: Two different partitions of the same point set over 4 processors. In
Figure (a), the union of the local skylines is the entire point set; in Figure (b), it is
the final skyline.

the number of points in Si and, for algorithms such as the branch-and-bound skyline

algorithm, on the size of the computed skyline. Thus, the partition should ensure

that the sets S0, S1, . . . , Sp−1 are of the same size, which is trivial, and that their

skylines are of about the same size. In order to maximize the number of non-skyline

points eliminated in the first phase, it is beneficial if the point set assigned to each

processor is a representative sample of the whole input.

A simple and effective approach that achieves all these goals is to (uniformly)

randomly distribute the points over the processors, assigning n/p points to each

processor. By partitioning this way, it is likely that Si follows the same distribution

and is representative of S. Since each subset holds a random sample of S, they are

expected to produce approximately the same number of skyline points and a similar

percentage in each of them is expected to belong to the final skyline. This partitioning

scheme is easy to implement and does not add much overhead. Hash partitioning,

which uses a hash function based on some subset of a point’s coordinates to map the

point to one of the processors, is another alternative that is likely to produce good

results for an appropriately chosen hash function. Furthermore, as our framework is

not restrictive in the use of a particular distribution method, alternative techniques

proposed elsewhere [77, 132] can be potentially applied.

4.2.2 Local Skyline Computation

Our algorithm in principle allows the use of any sequential skyline method to perform

the local computation on Si. However, in practice, the choice of the sequential algo-

rithm has a substantial impact on the algorithm’s performance. We confirmed this, by

37

experimenting with two sequential algorithms representative of the two categories of

skyline methods (see Section 3.2). These are the Divide-and-Conquer (DC) algorithm

of Kung et al. [89] and the Branch-and-Bound Skyline (BBS) algorithm of Papadias

et al. [108]. DC is a sequential algorithm that uses the divide-and-conquer paradigm

to compute the skyline without preprocessing. BBS is an index-based algorithm that

finds the skyline using an R-tree index [35, 76].

In theory, BBS has a worst-case running time of O(N2), whereas DC takes only

O(N logd−2N) time, where N is the the number of points in S. In practice, however,

the query time of DC can be very high. According to [108], the performance of

BBS mainly depends on the size of the computed skyline and the dimensionality

of the point set. This last limitation is inherited from the used index structure,

the R-tree. The performance of R-trees does not scale well with the number of

dimensions; in practice, however, only a moderate number of dimensions are really

relevant [86]. For 2–6 dimensions, BBS is highly effective because, in this case, usually

only a small percentage of the given points are part of the skyline. Given its good

practical performance, our parallel algorithm uses BBS for the computation of the

local skylines.

4.2.3 Global Skyline Computation

Given the local skylines sky(S0), sky(S1), . . . , sky(Sp−1) computed in the first phase

of the algorithm, the second phase computes sky(S) from these local skylines. This

is done using Algorithm 2 (referred to as Global-Skyline), which handles the

common case when S ′ = sky(S0) ∪ sky(S1) ∪ · · · ∪ sky(Sp−1) contains at most n/p

points differently from the rare case when |S ′| > n/p. The next two subsections

discuss these two cases in detail.

4.2.3.1 Few Local Skyline Points

If |S ′| ≤ n/p, Global-Skyline stores a copy of S ′ on each processor Pi, and pro-

cessor Pi then eliminates all points from sky(Si) that are dominated by points in S ′.

The remaining points in sky(Si) are the ones that belong to sky(S), while all removed

points do not.

To perform this filtering step, processor Pi uses an R-tree T over the points in S ′.

38

Algorithm 2: Global-Skyline(sky(S0), sky(S1), . . . , sky(Sp−1), k)

Input: Local skylines sky(S0), sky(S1), . . . , sky(Sp−1); set sky(Si) is stored on
processor Pi; k is the desired number of skyline points.

Output: A set of min(k, |sky(S)|) skyline points.

1 Let S ′
i = sky(Si) and li = |S ′

i|;
2 for all 0 ≤ i ≤ p− 1 do in parallel
3 Pi builds an R-tree R(S ′

i) for S
′
i;

4 Compute l =
∑p−1

i=0 li using an all-to-all communication;
5 if l < n

p
then

6 Use an all-to-all communication to combine trees R(S ′
0), R(S

′
1), . . . , R(S

′
p−1)

into one tree T and store it on each processor;
7 for all 0 ≤ i ≤ p− 1 do in parallel
8 Pi uses T to discard all points in S ′

i that are dominated by a point in
S ′ = S ′

0 ∪ S ′
1 ∪ · · · ∪ S ′

p−1; let gi be the number of points remaining in S ′
i;

9 else
10 Let g = 0 be the current size of sky(S);
11 Let gi = 0 be the number of points contributed by Pi to sky(S);
12 while g < k and not all sets S ′

i are empty do
13 for all 0 ≤ i ≤ p− 1 do in parallel
14 Pi selects (any selection will do) and removes a set S ′′

i of
(li/l) · (n/p) points from S ′

i;

15 Use an all-to-all communication to construct the set S ′′ =
⋃p−1

i=0 S
′′
i on

each processor;
16 for all 0 ≤ i ≤ p− 1 do in parallel
17 Pi marks all points in S ′′ dominated by a point in sky(Si) using

R(S ′
i);

18 Use an all-to-all communication to send all marked points back to their
original processors;

19 for all 0 ≤ i ≤ p− 1 do in parallel
20 Pi removes the received points from S ′′

i and adds the remaining
points in S ′′

i to its local portion of sky(S), increasing gi by the
number of added points;

21 Use an all-to-all communication to compute g =
∑p−1

i=0 gi on each
processor;

22 Use an all-to-all communication to collect all skyline points on processor P0;

39

For every point p ∈ sky(Si), processor Pi traverses T starting at the root. For every

visited node v, it inspects the children of v. If there is a child w whose top-right

corner dominates p, all points in w’s subtree dominate p, and the traversal can be

stopped, reporting that p does not belong to sky(S). If no such child w is found,

the search continues on all children of v whose bottom-left corners are not dominated

by p. The search ignores the children whose bottom-left corners are dominated by p

because all points in these subtrees are dominated by p and, thus, cannot dominate p.

The implementation of this strategy requires one global communication round

to send one copy of S ′ to every processor. Then every processor can locally build

its R-tree T and use T to remove those points from sky(Si) that are dominated by

points in S ′. This naive implementation, however, duplicates the R-tree construction

p times, essentially not parallelizing this part of the algorithm at all. As it turns out,

this is the most time-consuming part even of a one-processor version of the algorithm,

making it the most important part to parallelize. Section 4.3 discusses how this is

done by distributing the construction of T over all p processors. In particular, every

processor builds a subtree of T over sky(Si). After copying these local pieces to all

processors using an all-to-all communication, each processor can very quickly build T

from the received pieces. Experimental results confirm that this parallelization of the

R-tree construction leads to a tremendous speed-up of the skyline algorithm.

4.2.3.2 Many Local Skyline Points

If m = |S ′| > n/p, S ′ does not fit on a single processor, and the strategy described

above cannot be applied. In this case, each processor Pi randomly divides sky(Si)

into r = �mp/n� subsets Si,1, Si,2, . . . , Si,r of equal size, and the filtering proceeds in

r rounds. In the jth round, every processor Pi sends the jth subset Si,j of sky(Si) to

all other processors. Observe that no processor receives more than n/p points. After

receiving the set S ′′ = S0,j∪S1,j∪· · ·∪Sp−1,j, each processor Pi marks all points in S ′′

that are dominated by points in sky(Si). Once this is done, every processor sends the

points it has marked back to the processors they came from, which can be done in

another all-to-all communication. To complete the jth round, every processor Pi now

eliminates all the marked points it has received from sky(Si), as they are not part

of sky(S). All unmarked points in Si,j, on the other hand, belong to sky(S). This

40

process stops once at least k members of sky(S) have been identified or all r rounds

have been completed. At this point, the identified skyline points are collected on P0,

and min(k, |sky(S)|) of them are returned. Note that the number of identified points

is no more than k+n/p because each round identifies at most n/p skyline points and

less than k points had been identified by the end of the previous round. Thus, since

k ≤ n/p, all identified points can be collected on P0.

In each round, the marking of points in S ′′ that are dominated by points in sky(Si)

is done similarly to the filtering of dominated local skyline points when |S ′| ≤ n/p.

Before the first round of the collective filtering procedure, every processor Pi builds

an R-tree R(S ′
i) over the points in S ′

i = sky(Si). In every round, processor Pi uses

R(S ′
i) to decide for each point p ∈ S ′′ whether there exists a point in S ′

i that dom-

inates p. The required traversal of R(S ′
i) is identical to the traversal of T described

in Section 4.2.3.1.

Note that this alternate version of the second phase is required only in extreme

cases because, as shown by Bentley et al. [37], the expected size of the skyline of a

random point set is O(logd−1 n), which is typically less than n/p, and typical point

sets can be expected to behave much like random point sets in this respect. The

experimental results discussed in Section 4.5 confirm this, as the algorithm never

invoked this version of the second phase during the experiments.

4.2.4 Complexity

Even though our focus was not on obtaining a theoretically efficient parallel skyline

algorithm, it is still useful to have an understanding of the worst-case performance

of our algorithm. In this section we analyze its complexity in the Coarse Grained

Multicomputer (CGM) model of computation.

The CGM model [57] views the computer as consisting of p processors with

O(n/p) local memory and connected by some arbitrary interconnection network. A

CGM algorithm proceeds by alternating between computation and communication

rounds. During computation rounds, every processor has access only to data in its lo-

cal memory. During communication rounds, processors exchange data in an all-to-all

fashion, with no processor sending and receiving more than O(n/p) data.

The term “coarse-grained” reflects the assumption that n � p, which is realistic

41

for current parallel machines. For current machines, interprocessor communication is

significantly more costly than local computation. Hence CGM algorithms focus on

minimizing communication by minimizing the number of communication rounds.

Theorem 4.1. In the worst case, algorithm 1 computes the skyline for a point set

consisting of n elements stored on a p-processor CGM with O(n/p) local memory per

processor, n/p ≥ p, using O(p) communication rounds and O(n2) local computation,

O(n2/p) per processor.

Proof. Initially, O(1) communication operations are needed to decide whether the

union, S ′, of the p local skylines fits in the memory of a single processor. If we have

few local skylines points, only O(1) communication rounds are needed to combine the

locally constructed R-trees. On the other hand, in the case of many skyline points,

up to �p|S ′|/n� communication rounds are needed to complete the collective filtering

approach. Hence the total number of communication rounds needed is bounded by

O(p). In terms of local computation, observe that the worst-case cost of BBS on

n points is O(n2). Since each local skyline computation in either of the two phases

operates on O(n/p) points, its cost is therefore O(n2/p2). Since we have just argued

that the algorithm terminates after O(p) rounds, this implies that the total local

computation cost per processor is O(n2/p).

Note that the bound in Theorem 4.1 is a worst-case upper bound. Our experiments

show that the performance in practice is much better. In particular, we never ran

into a situation where the O(1)-communication round version of the global skyline

computation was insufficient, and BBS is very fast in practice due to pruning of R-tree

nodes.

4.3 A Parallel R-Tree Construction Algorithm

As discussed in Section 4.2.3.1, one of the main bottlenecks in any R-tree-based

skyline algorithm is the construction of the R-tree, while the computation of the

skyline using the R-tree is comparably fast. Thus, it is imperative to parallelize the

R-tree construction. This section describes how to do just this.

The key is a representation of the R-tree that allows a portion of an R-tree con-

structed on one processor to be used without modification on another processor.

42

Recall that we are working on a distributed-memory parallel architecture, where each

processor has its own private address space. Therefore, constructing an R-tree on

one processor using a standard pointer-based representation and then sending the

R-tree to another processor would result in the tree possibly being stored in different

memory locations on the sending and receiving processors. It is possible to adjust

the pointers, but this would require a traversal of the entire tree by each processor,

negating the performance gain achieved by distributing the R-tree construction. For

this reason, we propose a pointerless R-tree representation that can be exchanged

between processors without any need to adjust the representation on the receiving

processor.

Section 4.3.1 describes the pointerless R-tree representation. This representation

is not restricted to be used only in the context of the skyline algorithm but can be

used in any scenario where the construction of a static tree structure needs to be

distributed over multiple processors. It is, however, described using the construction

of an R-tree T for a point set S as a concrete example. Section 4.3.2 discusses how to

use this representation in a parallel R-tree construction algorithm, and Section 4.3.3

discusses how to implement the skyline filtering procedure using the constructed R-

tree.

4.3.1 A Pointerless R-Tree Representation

The structure of an R-tree over a point set is defined by two parameters: the leaf size l

determines the number of points to be stored at a leaf, and the fanout f determines

the maximum number of children per internal node. Every node v of the tree also

stores its MBB (see Section 3.2.4.2).

The pointerless R-tree representation consists of two arrays, T and S. Array

S stores the point set and is divided into chunks of size l, each of which contains

the points stored at a leaf of the tree. Array T holds the nodes of the tree, where

every node v is represented as a quadruple (l(v), u(v), children(v), deg(v)); l(v) and

u(v) are the two opposing corners of the MBB of v. If v is an internal node, then

children(v) is the index of the leftmost child of v in T , deg(v) is the number of

children of v, and these children are stored in deg(v) consecutive cells in T , starting

with index children(v). If v is a leaf, then children(v) is the index of the first point

43

in S associated with v, deg(v) is the number of these points, and all points associated

with v are stored in deg(v) consecutive cells in S, starting with index children(v).

Deciding whether a node is an internal node or a leaf is a matter of index arithmetic.

See Figure 4.3 for an illustration of this data structure.

p1

p2

p3 p4

p5
p6

p7 p8

p9

p10

p11

p12

p13

p14

p15

p16

q1

q2

q3

T [0]

T [1]

T [2]

T [3] T [5]

T [4] T [6]
q4

q5

(a)

T [0]

T [1] T [2]

T [3] T [4] T [5] T [6]

p1 . . . p4 p5 . . . p8 p9 . . . p12 p13 . . . p16

(b)

T q2 q3 1 2 q4 q5 3 2 p13 q3 5 2 p1 q1 0 4 p7 p6 4 4 p11 p10 8 4 p13 p16 12 4

S p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

(c)

Figure 4.3: Figure (b) shows an R-tree over the black points in Figure (a). Figure (a)
also shows the MBB’s of the R-tree nodes in Figure (b); the white points are additional
points used to represent these MBB. Figure (c) shows the two arrays representing the
tree in Figure (b). Array T is partitioned into records of four cells storing the bottom-
left and top-right corners of the node’s MBB, the index of the first child or point of
the node, and the number of children or points associated with the node.

This array representation of an R-tree can be computed in a bottom-up fashion.

We can assume that array S is already populated with the relevant points, as the

input has to be provided in some fashion, and an array of points is a natural input

representation. To populate array T , we construct the levels of the tree bottom-up,

starting with the leaves. First, we scan S backwards and add a new leaf node v at the

end of T , for every l points in S we read. In the process, we compute the information

to be stored at v, including its MBB. Once we have created the leaf level, we scan

the nodes on the current level backwards and add a node to the next level, for every

f nodes on the current level. Again, we can compute the information to be stored at

44

every constructed node in the same way as before. We continue in this manner, until

the current level has only one node, the root of T .

4.3.2 Parallel R-Tree Construction

The R-tree representation in Section 4.3.1 can be exchanged between processors with-

out becoming invalid, as array indices act as pointers relative to the beginning of the

array. Hence, this representation can be used to parallelize the construction of the

R-tree T discussed in Section 4.2.3. First, the point set S is distributed among the p

processors or, as in the context of the skyline algorithm, is given already distributed

among the processors. Then each processor builds an R-tree Ti over its subset, Si, of

points using the pointerless R-tree representation described in Section 4.3.1. To pro-

vide every processor with an R-tree over the entire point set, the trees T0, T1, . . . , Tp−1

are sent to all processors using an all-to-all communication. After copying the local

pieces to all processors, the only task left for every processor is to assemble these

individual trees into the final R-tree T . To this end, each processor creates a “cap”

M on top of trees T0, T1, . . . , Tp−1. This cap M is an R-tree over the bounding boxes

associated with the roots of trees T0, T1, . . . , Tp−1. Every leaf of M points to the

physical locations of the two arrays representing a tree Ti. The internal nodes of M

are then constructed bottom-up from the leaves ofM in the same manner as the con-

struction of the internal nodes of T in Section 4.3.1. This construction is illustrated

in Figure 4.4.

T1

S1

T0

S0

T2

S2

T3

S3

M

Figure 4.4: Parallel R-tree construction: merging the R-tree pieces.

45

While the construction ofM on each processor still means the duplication of work,

the amount of duplicated work is minimal, asM has less than 2p nodes. On the other

hand, the construction of the majority of the nodes of T , in the bottom part of T ,

takes full advantage of the p processors.

4.3.3 Querying the Constructed R-Tree

Answering queries with respect to the constructed R-tree always amounts to following

a set of root-leaf paths in the tree, which can be done by following pointers from

parents to children. Given the constructed representation of T , every root-leaf path

consists of three parts: a subpath in M , a subpath in T , and the set of points

associated with the leaf at the bottom end of the path. Following pointers from

parents to children insideM or T amounts to some simple index arithmetic. Following

the pointer from the last node inM to the root of the visited subtree Ti and following

the pointer from a leaf of Ti to the corresponding set of points is equally easy, as long

as every leaf of M and T is marked as such.

4.4 Implementation Details

We implemented our parallel skyline algorithm in C++ using the Message Passing

Interface (MPI) library [6], which is a standard that defines a communication API for

distributed memory architectures. The rest of this section discusses implementation

choices made in different parts of the algorithm.

R-tree construction. The performance of R-tree queries depends on the amount

of overlap between the bounding boxes of nodes that are not ancestors of each other.

In order to minimize the overlap between the bounding boxes in each tree Ti, each

processor sorts the points in Si in Hilbert order [79] before constructing Ti over Si.

It is well known that this ordering preserves locality and produces R-trees with lit-

tle overlap between bounding boxes. In our experiments, Quicksort is used to sort

the points, in combination with the comparison function provided by Doug Moore’s

Hilbert Mapping Library [105].

The random distribution of points among the processors, on the other hand, al-

most certainly leads to tremendous overlap between the bounding boxes of the roots

46

of trees T0, T1, . . . , Tp−1. While this is not desirable as far as the R-tree construction

is concerned, it seems unavoidable because the alternative is to distribute the points

over the processors in Hilbert order. We do not follow this approach as there is com-

putational overhead involved in distributing the data based on this order. Moreover,

we wanted to take advantage of the simpler random distribution method in order to

obtain small local skylines.

Communication. Another key element in the performance is the communication

required to move large packets of data across the network. Since our algorithm is de-

signed to work in communication rounds, every communication round is implemented

using mpi-all-to-all-v in MPI. The all-to-all operation greatly reduces the overhead

of communication between processors.

4.5 Performance Evaluation

We evaluated the performance of Parallel-Skyline using an extensive set of exper-

iments. These experiments focus on two scenarios: The first one considers the overall

performance of the entire algorithm; this is relevant for single query computations.

The second scenario looks at the performance of the query procedure once the R-tree

has been constructed; this shows how applications benefit from building an R-tree in

a preprocessing phase and then ask queries on different subsets of dimensions. In all

experiments, we therefore constructed the R-tree on all 6 dimensions independently

of the query dimensions, and answered the queries on subsets of between 2 and 6

dimensions using this structure.

Note that the query procedure includes: (a) the local BBS-query of the first

phase, and (b) the collective-filtering of the second phase. The construction of R-trees

over the local point sets assigned to the processors in the first phase is considered

preprocessing. However, while the evaluation of the query procedure excludes the

construction of the R-trees in Phase 1, the computation of the R-trees to complete

Phase 2 is included in the query cost (i.e., running time of the query procedure).

This R-tree construction during Phase 2 is necessary for each individual query, that

is, Phase 2 of each query does not benefit from the preconstructed R-trees for the

entire point set.

47

As discussed here, the experiments confirmed that the algorithm achieves good

speed-up and scales well, allowing the processing of datasets beyond the reach of

a single node in the cluster. Next we describe our test environment, the evaluation

criteria we consider and the data sets used in our experiments. Then, in Sections 4.5.4

and 4.5.5, we discuss the results of our experiments.

4.5.1 Platforms and Measurements

The Parallel-Skyline algorithm was evaluated on a 32-node Beowulf-style cluster

with 1.8GHz Intel Xeon processors. Each node was equipped with 1GB of RAM

and two 40GB 7200 RPM IDE disk drives. The operating system on each node was

Linux RedHat 7.2 as part of a ROCKS cluster distribution. The code was compiled

using gcc 2.95.3 and MPI/LAM 6.5.6 using optimization level -O3. Communication

between the nodes was provided by a Cisco 6509 GigE switch. The code was a faithful

implementation of Algorithm 1 using the pointerless structure from Section 4.3 to

represent the R-tree.

All timing results denote the wall clock time taken by the algorithm to complete,

measured from the start of the first process in our parallel algorithm till the termi-

nation of the last process.

4.5.2 Performance Measurement

For a parallel algorithm, the goal is to speed-up the computation proportional to the

number of processors used. This increase in performance can be translated into two

performance measures for parallel algorithms [63]:

1. Speed-up: Given a fixed input size, the ideal running time of the algorithm on

p processors is a 1/p fraction of the running time on a single processor. In this

case, the algorithm is said to achieve linear speed-up. Thus, the speed-up of the

algorithm measures the reduction in time needed to process the same amount

of data using more than one processor.

2. Scale-up: The scale-up of the algorithm, on the other hand, measures the

amount of data that can be processed in a given amount of time using p pro-

cessors. Ideally, one would hope that this is p times as much data as using a

48

single processor.

These two metrics are the simplest and most commonly used measures of parallel

performance. Our experiments evaluate Parallel-Skyline with respect to both

measures.

4.5.3 Datasets

As previous evaluations of skyline algorithms in the literature [39,45,56,86,108,110,

133,136], the algorithm was evaluated on synthetic and on real data sets with between

2 and 6 dimensions. The synthetic data sets were uniformly distributed random point

sets (see Figure 4.5(a)) and anti-correlated random point sets (see Figure 4.5(b)).

Uniformly distributed points should exhibit the behavior analyzed by Bentley [37],

and thus, for moderate numbers of dimensions as considered in our experiments,

should have small skylines. Anti-correlated point sets, on the other hand, should

have most of their points in their skylines and, thus, represent a good tool for testing

how well the algorithms can deal with large skylines. These synthetic data sets were

generated using a data generator used in previous evaluations of skyline algorithms

and provided by the authors of [39].

The real-world data was taken from the HYDRO1k Elevation Derivative Database

[44] and contained geographic data that provides hydrological information on a con-

tinental scale. The size of this data set was approximately 29,000,000 records.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Uniform data set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Anti-correlated data set

Figure 4.5: Synthetic data distributions used in the experiments.

For evaluating the speed-up, synthetic and real data sets of 1,000,000 and 5,000,000

records were used. Table 4.1 shows the sizes and skyline sizes of the point sets used

in the experiments. The evaluation of the scale-up used synthetic data between 2 and

6 dimensions and up to 80,000,000 records.

49

(a) Uniform

Size
Dim. 1M 5M
2 13 17
3 97 138
4 623 631
5 1819 3110
6 5371 9069

(b) Anti-correlated

Size
Dim. 1M 5M
2 11 22
3 414 477
4 2799 4417
5 14475 25328
6 97891 212865

(c) Hydrological

Size
Dim. 1M 5M
2 636 1115
3 1611 2298
4 2913 4561
5 5802 9440
6 8781 14095

Table 4.1: Data sets and their skyline sizes.

4.5.4 Speed-up Evaluation

This section discusses in detail the speed-up results of our algorithm. To do this,

Subsection 4.5.4.1 studies the total speed-up (the performance of the entire algorithm)

and Subsection 4.5.4.2 analyzes the query speed-up (the performance of the query

procedure once the R-tree has been constructed). The experimental results with

uniform data are shown in Figure 4.6, with hydrological data in Figure 4.7 and with

anti-correlated data in Figure 4.8.

4.5.4.1 Total Speed-up

Based on the results obtained with uniform, hydrological and anti-correlated data with

1 million and 5 million points (see Figures 4.6a, 4.6d, 4.7a, 4.7d, 4.8a and 4.8d) we

conclude that the total processing time (which includes the local R-tree construction,

communication cost, and query cost) of a d-dimensional skyline query is significantly

reduced when more processors are added to the computation.

Consistent with our results for the total time, the speed-up of the algorithm

with uniform and hydrological data, shown in Figures 4.6b, 4.6e, 4.7b and 4.7e, also

improves as we increase the size of the input and hence the total amount of work to

be performed. The total speed-up curves in all dimensions are above the linear speed-

up curve, indicating that the algorithm parallelizes effectively, achieving superlinear

speed-up. The most likely reason for this behavior is the effect that cache memory

has on the running time of the algorithm. With a larger overall cache size due to

multiple processors, more data fits in the caches; thus, memory access time is reduced

considerably.

Computing skylines on anti-correlated data sets is much more challenging than the

50

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(a) Total wall clock time (1M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(b) Total relative speedup (1M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(c) Query relative speedup (1M points)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(d) Total wall clock time (5M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(e) Total relative speedup (5M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(f) Query relative speedup (5M points)

Figure 4.6: Speedup results on uniform data. The left column (Figures a–c) corre-
sponds to experiments with 1,000,000 points. The right column (Figures d–f) corre-
sponds to experiments with 5,000,000 points

51

other data sets as reflected by the running times of Figures 4.8a and 4.8d. In this case,

the algorithm achieves superlinear speed-up with 2–4 dimensions (see Figures 4.8b

and 4.8e). However, with 5 and 6 dimensions, the total speed-up is sublinear. The

reason is that, in 5–6 dimensions, the size of the skyline has increased substantially

and computing the full skyline requires significantly more time. The next subsection

sheds more light into the effects of dimensionality and the size of the skyline on the

algorithm’s speed-up.

4.5.4.2 Query Speed-up

The R-tree construction cost is worthwhile if it can be amortized over a number

of queries that can subsequently be answered using this tree. This section studies

the performance of the query procedure in terms of the effect that input size and

dimensionality have on it, and also studies the hard case presented by anti-correlated

data.

Effect of the input size. We first study the effect, on uniform and hydrological

data, of increasing the input size from 1,000,000 points (Figures 4.6c and 4.7c) to

5,000,000 points (Figures 4.6f and 4.7f); we can see that the query speed-up on larger

inputs is higher. An explanation for this is that there is little work to be done with

the smaller data sets, which results in low query times. On the other hand, query

processing on a larger data set takes longer, establishing a higher baseline on a single

processor with which the running times on multiple processors are compared. It is

worth pointing out that in these curves, specifically for 5–6 dimensions, the algorithm

again achieves at some point superlinear relative speed-up, which we believe to be

the result of cache effects. Given more processors, each processor has to process less

data, resulting in a higher fraction of data that fits in cache.

Effect of the dimensionality. In contrast to the case of total speed-up, where the

increase in dimensionality tends to decrease the speed-up, the query speed-up now

improves with increasing dimensionality and processors (see Figures 4.6c and 4.6f with

uniform data, and Figures 4.7c and4.7f with hydrological data). In these results, the

lowest query speed-up values were obtained with data sets of 2–4 dimensions. The

52

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(a) Total wall clock time (1M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(b) Total relative speedup (1M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(c) Query relative speedup (1M points)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(d) Total wall clock time (5M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(e) Total relative speedup (5M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(f) Query relative speedup (5M points)

Figure 4.7: Speedup results on hydrological data. The left column (Figures a–c)
corresponds to experiments with 1,000,000 points. The right column (Figures d–f)
corresponds to experiments with 5,000,000 points

53

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(a) Total wall clock time (1M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(b) Total relative speedup (1M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(c) Query relative speedup (1M points)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s)

Processors

2D
3D
4D
5D
6D

(d) Total wall clock time (5M points)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(e) Total relative speedup (5M points)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Linear Speedup
2D
3D
4D
5D
6D

(f) Query relative speedup (5M points)

Figure 4.8: Speedup results on anticorrelated data. The left column (Figures a–c)
corresponds to experiments with 1,000,000 points. The right column (Figures d–f)
corresponds to experiments with 5,000,000 points

54

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

1 4 8 12 16

T
im

e
(s

ec
s.

)

Processors

Query Ph. 1
Comm.

Query Ph. 2

(a) Hydrological data set

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

1 4 8 12 16

T
im

e
(s

ec
s.

)

Processors

Query Ph. 1
Comm.

Query Ph. 2

(b) Uniform data set

Figure 4.9: Break-down of a 2d query with 5,000,000 points

reason is that, in these dimensions, there is little computational work to perform.

In 5–6 dimensions, on the other hand, the algorithm yields higher query speed-up

values, as there is more work to be done (e.g., a higher number of dimensions means

more work per point and an increase in the number of skyline points).

Effect of the skyline size. In the uniform distribution with 1,000,000 points

we observed low query speed-up, while with the hydrological data set and the same

number of points, the curves, especially in higher dimensions (5 and 6), show slow but

steady increase. The reason for this difference lies in the sizes of the skyline: in 2-d,

for example, the skyline of the hydrological data is almost 50 times larger than the

one of uniform data (see Table 4.1), which allows better parallelization. Figure 4.9

also provides an explanation for this behavior: when comparing the performance of

both data sets for a 2-d query with 5,000,000 points, we can see that the query times

are so small for the uniform data set (Figure 4.9b) that adding more processors does

not bring much improvement and data communication becomes a significant factor.

In contrast, there is more computational work to be done for hydrological data, and

this is reflected in Figure 4.9a, where with an increasing number of processors, the

communication overhead gradually increases as expected, but the computation is

better split among the processors.

Now, to analyze the effect that a very large skyline has on the algorithm, and

because it poses a greater challenge, we used anti-correlated data (see Figure 4.8).

55

Previous sequential work has focused on this as a hard case, as, typically, anti-

correlated data sets have the largest skyline size. By comparing Figures 4.7c and 4.7f

to Figures 4.8c and 4.8f we can see the impact that anti-correlated data has on the

performance of the algorithm. The observation here is that, despite the higher com-

putational workload in the anti-correlated case—which intuitively should allow better

parallelization—, the query speed-up on anti-correlated data sets is worse than that

of hydrological data sets. The reason for the lower query speed-up is that, with

anti-correlated data, a much greater number of points survive after the local skyline

computations in Phase 1. This means that the timings of Phase 2 are now much

higher due to the very large size of the skyline, and the required time to filter the

surviving points. It is also worth pointing out that in this case communication is

negligible compared to the query times.

4.5.5 Scale-up Evaluation

Our last experiment focuses on measuring the scale-up of our algorithm, where the

size of the processed data set increases proportionally with the number of processors,

and one hopes to be able to process p times as much data using p processors as one

can process with a single processor in the same amount of time. Figures 4.10 and 4.11

show our experimental results.

Overall, we observe excellent scale-up results for Parallel-Skyline. The scale-

up of the total time, shown in Figures 4.10a and 4.11a for uniform and hydrological

data sets respectively, is above .97 for all dimensions in both data sets.

For the query time, with uniform data, the scale-up is above 0.83 for all dimensions

and numbers of processors (see Figure 4.10b). For dimension 2, there are slight

variations which are likely due to cache effects, and the reduced work to be done in

Phase 2 on account of the relatively small skyline. Dimensions 3 and 4 have a similar

scale-up behavior, dropping off slightly between 1 and 8 processors, but then holding

steady up to 16 processors. For the cases of dimensions 5 and 6, the algorithm achieves

excellent scale-up of not less than .9. Similar behavior is reported with hydrological

data, where the query scale-up is above 0.81 for all dimensions (see Figure 4.11b).

Dimensions 5 and 6 yield the best results with not less that .92.

In order to understand why the scale-up for dimensions 2–4 is not as good as for 5

56

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(a) Total scale-up

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(b) Query scale-up

Figure 4.10: Scale-up results on uniform data set with 5,000,000 points per processor
with Algorithm 1.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(a) Total scale-up

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

S
ca

le
up

Processors

Linear Scaleup
2D
3D
4D
5D
6D

(b) Query scale-up

Figure 4.11: Scale-up results on hydrological data set with 5,000,000 points per pro-
cessor with Algorithm 1.

57

and 6 dimensions, we must recall that the network bandwidth is not being scaled as

we increase the data size. As we increase the data size per processor, more data has

to be moved across the network, and then communication becomes a factor for the

overall query times. On the other hand, for dimensions 5 and 6, the communication

effect is offset by the fact that sequential computation times are higher in comparison

to the time required to exchange data.

Overall, the results shown in this section demonstrate that theParallel-Skyline

algorithm can be used effectively to speed up the computation of skylines of large data

sets of a moderate number of dimensions, which is what is relevant in practice [86].

Moreover, the algorithm shows good scalability with increasing data set sizes and

number of processors.

Chapter 5

External-Memory Skyline Computation

OurParallel-Skyline algorithm speeds up the processing of skyline queries tremen-

dously. This result is particularly relevant for the kind of user handling large data

warehouses—e.g., with several terabytes of data—which simply cannot be processed

efficiently without using parallelism. Other users, such as small companies, may not

be able to justify the acquisition of a powerful parallel machine. Yet the data sets of

such users may reach hundreds of gigabytes and, thus, are beyond the size of the main

memory of a standard PC. Thus, these users can benefit from I/O-efficient methods

to answer skyline queries. In this chapter we present two I/O-efficient skyline al-

gorithms. These algorithms are based on branch-and-bound skyline (BBS) and can

be considered I/O-efficient versions of BBS. The algorithms can also replace BBS as

the algorithm used on each processor in order to increase the input size our parallel

skyline algorithm can handle efficiently.

In the following sections, we first introduce and then describe in detail our external

memory skyline query algorithms. Afterwards, we demonstrate their effectiveness in

processing point sets beyond memory size and show that they outperform internal-

memory skyline methods on such data sets.

5.1 Overview

Designing an I/O-efficient version of BBS requires us to develop I/O-efficient imple-

mentations for the different steps of the algorithm. For some steps this is entirely

trivial, while others pose greater challenges. To explain this in further detail, recall

that BBS is a two-part procedure: the first part constructs an R-tree over the given

point set, the second traverses the constructed R-tree to extract the skyline points.

Also recall that during the traversal, every inspected R-tree node or point is checked

against the currently known skyline points to test whether any of them dominates

this node or point. This requires a linear scan through the current set of skyline

58

59

points for each test and, thus, does not pose any challenges in terms of I/O-efficiency.

Moreover, the computed skyline is often small enough to fit in memory, completely

removing any concerns about I/O-efficient access to the current set of skyline points.

The construction of the array-based R-tree over the given point set S does not pose

any challenges either, as it involves sorting the points in S in an appropriate manner

and building the tree over S using what amounts to two scans of the given point set

(see Section 4.3.1).

The traversal of the R-tree T using a BBS query, on the other hand, is non-trivial,

as the query prescribes a specific order in which to visit the nodes of the tree, and

this order may bear little resemblance to the order the nodes are stored on disk.

Thus, the BBS query may cause a large number of random disk accesses, resulting

in a substantial slow-down of the query procedure. The two algorithms presented in

this chapter address this I/O bottleneck in BBS by ensuring that the order in which

nodes are visited matches the order the nodes are stored on disk.

The first algorithm, DFS-Skyline (DFSS), modifies the order in which the query

procedure inspects R-tree nodes. The modified traversal may result in visiting more

R-tree nodes than using BBS, but the traversal visits nodes in the order they are

stored on disk, allowing the query cost to be bounded by that of a single scan of the

R-tree. In practice, the performance of DFSS is even better than this estimation, as

many nodes are skipped by the traversal due to pruning of subtrees. Furthermore, this

sequential scan takes advantage of disk read-ahead and fast seeks between adjacent

sectors, which would not be the case for random disk accesses even if the data was

accessed in a blockwise fashion.

The second algorithm, Presorted-BBS, arranges the R-tree nodes so that stan-

dard BBS visits the nodes in the order they are stored on disk. Thus, it combines the

efficient pruning of BBS with the good I/O behavior of DFSS. This, however, comes

at an increased R-tree building cost, as an additional sort of the R-tree nodes is re-

quired before applying the query. Our experiments investigate whether the decrease

in number of visited R-tree nodes during the query suffices to pay for the increased

preprocessing cost.

Both algorithms represent the R-tree using the pointerless R-tree representation

from Section 4.3, as its array structure makes it an excellent candidate to be stored

60

on disk.

5.2 DFS-SKYLINE (DFSS)

The discussion of the DFS-Skyline algorithm is split into two parts. First, the

construction of the R-tree is discussed, including the layout of its nodes on disk.

Then, the procedure for querying the R-tree is presented, along with a proof of its

correctness.

5.2.1 R-tree Construction

To construct the R-tree for DFSS, the points in the given point set S are initially

sorted by their distance from the origin using an I/O-efficient sorting algorithm.

Then an array T storing the internal nodes of the R-tree is constructed similar to the

construction in Section 4.3.1; however, the ordering of the nodes in the tree deviates

from the one described in Section 4.3.1. In particular, the nodes are now stored in

the order they are visited by a preorder traversal that visits the children of each node

in left-to-right order (and, thus, visits the leaves of the tree by increasing distance

from the origin). Figure 5.1 illustrates this.

p1

x

y

p5
p6

p4

p2
p3

p8

p7

(a)

N1 N2 N3 N4

p5 p6 p7 p8p1 p2 p3 p4

N1 N2 N3 N4

N5 N6

N7N5 N6

(b)

Figure 5.1: DFSS vs. Presorted-BBS. The former stores (and visits) the nodes
of T in the order N7, N5, N1, N2, N6, N3, N4. The latter does so in the order
N7, N6, N5, N1, N2, N3, N4.

The construction of this layout is fairly easily achieved using a (backward) scan

of S, a scan of T to populate T , and a stack R that maintains the roots of the subforest

of T constructed so far. The entries of R are quadruples (i, h, j, B), each representing

61

a node v in T . A node v represented by a quadruple (i, h, j, B) has MBB B, is stored

at position i in T , has distance h from the leaf level, and is the jth node in R at this

distance from the leaf level.

As in Section 4.3.1, a leaf v is added to T for every l (leaf size) consecutive

elements read from S. Upon construction, v does not have a parent yet. Hence, a

quadruple qv = (i, 0, j, B) representing v is pushed onto stack R. Components i, h,

and B of the quadruple are easy to determine. To determine j, let qw = (i′, h′, j′, B′)

be the quadruple on the top of stack R immediately before pushing qv onto R. If

h′ = 0, then qw represents a sibling leaf of v, and j = j′+1. Otherwise, it represents a

non-leaf node w, and v is in fact the only leaf currently on R; so j = 1. After pushing

qv onto R, subtrees of T are merged (if possible) using the following procedure.

If the topmost entry q = (i, h, j, B) on R satisfies j = f , the f nodes v1, v2, . . . , vf

corresponding to the f topmost entries q = q1, q2, . . . , qf on R are roots at the same

level h in T , where f is the fanout of the R-tree. These subtrees are merged into

a single tree by creating a new node v and making nodes v1, v2, . . . , vf its children.

Entries q1, q2, . . . , qf are popped from R, and a new entry qv = (i′, h + 1, j′, B′)

representing node v is pushed onto R. Here, i′ is the index of node v in T ; B′ is its

MBB, which is easily computed from the MBB’s of v’s children stored with the popped

entries q1, q2, . . . , qf ; and j
′ is computed again by inspecting the entry (i′′, h′′, j′′, B′′)

on the top of stack R immediately before pushing qv. If h
′′ = h+1, then j′ = j′′ + 1;

otherwise (h′′ > h + 1), j′ = 1. This may again lead to the j-component of the

topmost entry (that is, qv) being equal to f . If so, this parent addition procedure is

repeated until the topmost entry on R has a j-component less than f .

Once all entries in S have been processed in this manner, there may be a list of

roots left on R. They are merged into a single tree by repeatedly popping all entries

with the same h-component from the stack, creating a new node in T that is the

parent of the corresponding node, and pushing a new tuple representing this parent

onto R. This is repeated until R contains a single entry, which represents the root

of T .

62

5.2.2 Skyline Construction

Given the representation of the R-tree constructed in the previous subsection, a mod-

ified BBS procedure can now be used to compute the skyline of S. This procedure

(shown in Algorithm 3) is identical to BBS, except that the nodes of the R-tree may

be visited in a different order. Recall from Section 3.2.4.2 that, if a tree node cannot

be pruned because the bottom-left corner of its bounding box is not dominated by

a skyline point, BBS adds its children to a pool of nodes to be visited next, and it

always chooses the node with minimum distance from the origin to visit next.

Algorithm 3: DFS-Skyline(T, r)

Input: A pointerless representation of an R-tree T over a point set S and with
root r.

Output: An array L storing the skyline points of S.

1 L := ∅; /* Set of skyline points */
2 S := ∅; /* Stack of nodes to be explored */
3 Push(S, r);
4 while S
= ∅ do
5 u := Pop(S);
6 if u is not dominated by a point in L then
7 if u is a leaf then
8 forall the points p in u by increasing distance from the origin do
9 if p is not dominated by a point in L then

10 Append p to L;

11 else
12 forall the children v of u from right to left do
13 if v is not dominated by a point in L then
14 Push(S, v);

15 return L;

DFSS, on the other hand, performs a pruned depth-first traversal; that is, for a

node v that cannot be pruned (using the same condition as used by BBS), DFSS

first completes the traversal of the subtree rooted in v’s leftmost child, then proceeds

to the second child from the left, and so on. Given the order in which the nodes are

stored on disk, this left to right traversal means that the algorithm actually visits the

nodes in the order they are stored, and the result is a scan of the R-tree that skips

63

sections corresponding to pruned subtrees. The difference between the two traversal

strategies is illustrated in Figure 5.1. The next two lemmas state that this altered

order of visiting nodes does not affect the correctness of the procedure and thatDFSS

computes the skyline of S I/O-efficiently.

Lemma 5.1. DFSS correctly computes the skyline of the given point set S.

Proof. DFSS, just as BBS, never prunes a point p in S that belongs to sky(S). To see

why this is true, consider such a point p. Since there is no point in S that dominates p,

there is also no point in S that dominates any ancestor of p in T . In particular, there

is no such point in the part of sky(S) constructed before inspecting any given ancestor

of p. This implies that no ancestor of p is pruned, and the traversal reaches p and

adds it to L. This proves that the list L computed by DFSS is a superset of sky(S).

To see that L = sky(S), it remains to show that L ⊆ sky(S), that is, that only

skyline points are added to L. So consider a point p /∈ sky(S). Then there exists a

point q ∈ sky(S) that dominates p and, hence, has a smaller distance than p from

the origin. As shown in the previous paragraph, DFSS adds q to L when it reaches

the leaf storing q. By the ordering of the leaves of T , any traversal that visits p must

visit q before p because q is closer to the origin than p. Hence, by the time p is visited,

q already belongs to L, which prevents the addition of p to L.

Lemma 5.2. The cost of DFSS is bounded by the cost of sorting S once and se-

quentially scanning S 2 + 4f/[l(f − 1)] ≤ 6 times, as long as f, l ≥ 2, where f and l

are the fanout and leaf-size of the R-tree respectively.

Proof. The R-tree construction sorts S and then scans S and T once. In addition,

every node in T causes two stack operations on R, one Push and one Pop.

The query procedure performs at most one complete traversal of the tree, amount-

ing to another scan of T and S. Hence, S is scanned twice and the cost of manipulating

T and R is bounded by that of four scans of T . The number of nodes in T is easily

bounded by (S/l) · f/(f − 1), which is at most 4S, as long as f, l ≥ 2. Summing the

different costs now yields the lemma.

Note that the bound in Lemma 5.2 is a worst-case upper bound. The practical

performance is usually much better due to pruning. Yet, even in the presence of

64

pruning, the algorithm benefits from accessing the nodes in T in the order they are

stored on disk, as these accesses can be thought of as a scan of T that skips over

certain sections.

5.3 PRESORTED-BBS

The second approach is a direct I/O-efficient implementation of BBS. The key is to

ensure that the order in which BBS inspects points corresponds to the order in which

they are stored on disk. Fortunately, once the R-tree has been constructed, this order

is easy to determine, as it is fully determined by the distances of the R-tree nodes

from the origin. This leads to the following algorithm.

Sort the points in S by increasing distance from the origin and construct the R-

tree over the sorted point set using the procedure from Section 4.3.1. Now sort the

nodes of the constructed tree by increasing distance from the origin. Then apply BBS

to the resulting tree layout.

Again, as the nodes are stored in the order they are visited by BBS, the cost

of traversing the constructed tree can be bounded by the cost of a single scan of

its node set. The construction of the R-tree using the procedure in Section 4.3.1

involves one scan of S and two scans of T . Unfortunately, the sorting of the nodes

of T by increasing distance from the origin requires substantial book-keeping, as in

addition to being placed in a new position, every node also has to be informed about

the new positions of its children. Thus, sorting the nodes of T requires in fact three

sorting passes over T and two scans of T . It is unclear whether the expected gain in

the performance of the BBS query compared to the query procedure used by DFSS

suffices to compensate for this additional overhead in preprocessing. Investigating

this is a focus of our experiments discussed in the remaining sections.

5.4 Performance Evaluation

We conducted a set of experimental studies to compare the performance of our al-

gorithms, DFSS and Presorted-BBS, on synthetic and real data sets. In the ex-

periments discussed in this section, we obtained a substantial speed-up over internal-

memory versions of our algorithms. However, in the case of Presorted-BBS, the

65

reduction in the number of visited nodes was not enough to compensate for the in-

creased preprocessing cost when compared to DFSS, making DFSS the clear winner

on datasets beyond memory size. We also compared our algorithms with the Sort-

Filter Skyline (SFS) [50] algorithm (see Section 3.2). In SFS, the points are initially

sorted according to a scoring function. This sorting procedure arranges the points in

ascending order of their scores. Thus, points with lower scores are likely to dominate

a large number of points and skyline points are found earlier in the scan of the point

set.

Note that the skyline computation with our two algorithms involves (1) sorting the

initial point set by increasing distance from the origin, (2) building the array-based

R-tree, and (3) querying the R-tree to compute the skyline. The second step also

includes, for the case of Presorted-BBS, the time required to sort the bounding

boxes, plus the time to recalculate the new positions. In the case of SFS, the sky-

line computation consists of initially sorting the points with respect to their volume

(product of their dimensions) values, followed by a scan of the point set to determine

the skyline.

Next we describe our test environment, the data sets and the parameters used in

our experiments.

Experimental platform. The algorithms, DFSS, Presorted-BBS and SFS,

were implemented in C++ using STXXL [59], a library that provides I/O-efficient

implementations of the data structures found in the C++ STL. During compilation,

optimization level -O3 was used. The algorithms were evaluated on a PC with a

3GHz Intel Pentium 4 processor, 1GB of RAM, an 80GB 7200 RPM IDE disk, and

running Fedora Core 6 Linux. For all experiments, all timing results denote the wall

clock time taken by the algorithm to complete.

Datasets. We performed experiments using 1–5, 10, 15 and 30 million points in

6 dimensions with uniform and anti-correlated data. For hydrological data we used

the same sizes, except for the largest one, which was 29 million instead of 30 million.

Despite the fact that our graphs show only the results for 6-d skyline computation,

the same relative performance of the algorithm was observed in 2–5 dimensions; 6-d

is the computationally most expensive case in our experiments.

66

Tuning parameters. An stxxl::vector was used to implement the pointerless R-

tree structure introduced in Section 4.3.1 and the stxxl::sort algorithm to perform

the sorting step. An stxxl::vector is organized as a collection of blocks residing on

disk and STXXL allows the specification of the block size for data transfers between

disk and memory. We experimented with different block sizes and a block size of

8MB resulted in the best performance. This block size was used throughout our

experiments. Two additional parameters control the amount of memory allocated

to the LRU pager used by the vector to cache accessed blocks. The first parameter

is the page size; data is swapped one page at a time. The second parameter is the

number of pages to be cached. We set these parameters to 2 and 4 respectively. The

sequential data accesses of the algorithms did not benefit substantially from a bigger

cache, but this would have left less memory for the sorting algorithm. Likewise, we

experimented with different parameters for laying out the R-tree. Using a fanout of

2 and a leaf size of 500 gave us the best overall running times.

In Section 5.4.1 we compare the performance of the external-memory (EM) al-

gorithms against internal-memory (IM) methods and study the effects of increasing

input size and skyline size on the algorithms. Afterwards, in Section 5.4.2, we study

the behavior of the external memory algorithms in more detail.

5.4.1 Comparison of IM and EM Algorithms

The starting point in evaluating DFSS and Presorted-BBS, was to implement

main memory versions of them, to observe the performance when using virtual mem-

ory and compare it with the performance when using an I/O-efficient algorithm in-

stead. We use IM-DFSS and IM-Presorted-BBS to refer to the main memory

methods, and EM-DFSS andEM-Presorted-BBS to refer to the external-memory

ones.

Effect of the input size. As expected, our internal memory implementations per-

form very well as long as the data fits in memory; if the structures used fit entirely in

memory, which is the case for 1–5 million records, the algorithm finishes in seconds

and with a CPU utilization of almost 100% for the hydrological and uniform data. On

67

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

IM Presorted-BBS
IM DFS-Skyline

EM Presorted-BBS
EM DFS-Skyline

SFS

(a) Uniform data set

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

IM Presorted-BBS
IM DFS-Skyline

EM Presorted-BBS
SFS

EM DFS-Skyline

(b) Hydrological data set

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

SFS
IM Presorted-BBS

IM DFS-Skyline
EM Presorted-BBS

EM DFS-Skyline

(c) Anti-correlated data set

Figure 5.2: Total time results of DFSS, Presorted-BBS and SFS in external mem-
ory (EM), and results of internal memory (IM) variants of DFSS and Presorted-
BBS. Labels are ordered top-down from fastest to slowest procedure.

the 10M data sets, we can see a sharp rise in the curves due to the use of virtual mem-

ory, causing running times to grow rapidly (see Figures 5.2a–c). The virtual memory

system allows the address space to be much larger than what can fit in internal mem-

ory; if the required address is not in internal memory, a page fault is triggered. After

exceeding the internal memory, IM-DFSS and IM-Presorted-BBS rely on vir-

tual memory to handle page management, causing a severe performance degradation

due to excessive page faults. For example. IM-DFSS takes 41 minutes to compute

the skyline of 10M records of hydrological data, and IM-Presorted-BBS takes 2.7

hours approximately to do the same. For uniform data, IM-DFSS takes 48 minutes,

whereas IM-Presorted-BBS needs 2.7 hours to process 10M records. For larger

inputs the implementations were terminated after several hours of running without

68

having produced any result. In contrast, the running time of the external memory

counterparts, continues to grow gradually with increasing input size. For example,

EM-DFSS manages to compute the 6-d skyline of 29,000,000 records of real (hydro-

logical) data in approximately 6 minutes, and EM-Presorted-BBS takes roughly

21 minutes. For the uniform data set and 30,000,000 records, EM-DFSS takes again

5 minutes to produce the skyline, and EM-Presorted-BBS does the same in around

13 minutes.

Data sets with an anti-correlated distribution again pose an interesting challenge

(Figure 5.2c). The running times with these data sets are substantially greater. This

is because compared to uniformly distributed data, anti-correlated distributed data

increases the skyline sizes. The internal memory methods always have lower running

times while they fit in main memory. On the other hand, we can see them using virtual

memory when working on a greater data set. In general, in all the data distributions,

we observe the same behavior: the internal memory methods cannot efficiently handle

data sets beyond memory size, while the external memory algorithms behave better

and their running times grow gradually with the input size.

Effect of the skyline size. Let us consider the effect that the size of the skyline

has on the algorithms. Due to the inherent characteristic of the skyline computation,

higher dimensionality implies a larger skyline and a larger skyline represents more

computational work. By comparing Figures 5.2a–b to Figure 5.2c we can see the

impact that a bigger skyline has on the performance of the algorithms. For instance,

the performance on the uniform data is always better than the performance on the

anti-correlated data because the skyline size has increased substantially. For the anti-

correlated data sets used here, the final skyline sets were 97,891, 139,740, 171,562,

190,657, 212,865, 289,307, 345,089, and 460,817 points for 1M, 2M, 3M, 4M, 5M, 10M

and 30M, respectively. These sizes are at least ten times bigger than their respec-

tive counterparts with the other two distributions. Independent of the preprocessing

method, the algorithms must still compare each skyline point against every other one

to verify it.

69

5.4.2 Comparison of External Memory Algorithms

Now that we have established that the internal memory algorithms are not efficient in

processing data sets beyond memory size, let us study the performance of the external

algorithms in more detail.

Overall performance. By looking at Figures 5.2a–c we observe that SFS out-

performs any of the other external algorithms for small skylines; however, as soon

as the size of the skyline increases, the performance of SFS degrades. DFSS and

Presorted-BBS have the added cost of building an R-tree. On sets with small

skylines, there is hardly any benefit from the pruning of the R-tree. Once the sky-

line gets larger, the pruning of R-tree nodes becomes effective and the added cost of

constructing the tree pays off: DFSS and Presorted-BBS outperform SFS.

To see this behavior more clearly, consider a uniform distribution (Figure 5.2a).

The results indicate that SFS is the fastest algorithm; this is not surprising, as

these data sets have the smallest skylines—the skyline of the 30M data set contains

approximately 15000 points. In this case, SFS finds the skyline points early in the

scan, leading to fewer dominance tests. On the other hand, DFSS and Presorted-

BBS need to construct the array-based R-tree—a costly operation with little gain in

this case.

With hydrological data (Figure 5.2b), DFSS is the now fastest algorithm. The

skyline size in this case is much larger (over 23000 points in the 30M case); hence, the

performance of SFS starts to degrade due to an increase in the number of dominance

tests. In contrast, DFSS now benefits more from pruning away nodes (and points)

and not having to perform dominance tests on the whole point set.

Finally, Figure 5.2c shows that, with anti-correlated data, SFS’s curve spikes up

due to the high number of comparisons it has to perform. In contrast, our algorithms

have significantly lower running times due to pruning of tree nodes, which translates

into fewer comparisons.

Performance of the query procedure. Another performance measure is the

query time. The query-only times for the three algorithms is shown in Figure 5.3;

these timings do not consider any preprocessing or construction cost, they only reflect

70

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

EM Presorted-BBS
EM DFS-Skyline

SFS

(a) Uniform data set

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

SFS
EM DFS-Skyline

EM Presorted-BBS

(b) Hydrological data set

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30

T
im

e
(s

ec
s)

Number of Points (millions)

SFS
EM Presorted-BBS

EM DFS-Skyline

(c) Anti-correlated data set

Figure 5.3: Only query time results of EM-DFSS, EM-Presorted-BBS and SFS.
Labels are ordered top-down from fastest to slowest procedure.

the cost of the scanning (and computing the skyline) over the point set in the case of

SFS, and tree traversal in the case of DFSS and Presorted-BBS. Ultimately, we

use this measure to determine if there is any performance gain by the BBS query of

Presorted-BBS when compared with the query procedure used by DFSS.

With uniform data (Figure 5.3a), SFS is the fastest algorithm due to the small

skyline. However, with hydrological data (Figure 5.3b), the increase in the skyline’s

size becomes a factor against SFS’s performance as its query times are slower by at

least a factor of two than those of DFSS and Presorted-BBS. Overall, with these

data sets, the query procedure of Presorted-BBS is slightly faster than DFSS.

For the case of anti-correlated data (Figure 5.3c), the query time of SFS is clearly

much higher, thus, the lower preprocessing time of it does not compensate for its high

71

skyline computation cost. On the other hand, our algorithms have much better run-

ning times on this distribution, with DFSS being slightly better than Presorted-

BBS.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360
 380
 400

1 2 3 4 5 10 15 30 1 2 3 4 5 10 15 30

T
im

e
(s

ec
s.

)

Millions of Points

Sort
Build

Query

Presorted-BBSDFSS

(a) Uniform Data

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360
 380
 400

1 2 3 4 5 10 15 29 1 2 3 4 5 10 15 29

T
im

e
(s

ec
s.

)

Millions of Points

Sort
Build

Query

Presorted-BBSDFSS

(b) Hydrological Data

Figure 5.4: Break-down of a 6d query. Note: for visualization purposes the Build
time of Presorted-BBS with 29|30M points was cutoff at 400 secs., while its value
is 1228 and 1150 for uniform and hydrological data sets respectively.

Comparison of PRESORTED-BBS and DFSS. Given that Presorted-BBS

is slightly faster than DFSS in the query procedure for uniform and hydrological

data sets, we now take a closer look at both algorithms and determine if the lower

72

query times of Presorted-BBS suffice to compensate for its additional overhead

in preprocessing. Figure 5.4 provides insight into this comparison by showing the

added preprocessing cost of Presorted-BBS and DFSS using results with uniform

and hydrological data. We observe that indeed Presorted-BBS gets faster than

DFSS in the query part, but it pays for it with a much bigger increase in the R-tree

construction; the sorting part, however, remains exactly the same in both algorithms.

For example, the R-tree construction cost with 15M data set is 3 times higher for

Presorted-BBS than for DFSS, while the query time is only slightly faster for

Presorted-BBS. The additional overhead in preprocessing explains why, in terms

of the overall running time, DFSS is much faster than Presorted-BBS.

In general, SFS is the fastest algorithm for small skylines, as is the case with

uniform data sets. In contrast, DFSS and Presorted-BBS perform much better

with data sets having larger skylines as, for example, with anti-correlated and hydro-

logical data sets. DFSS, overall, is the fastest of our two methods. The experimental

evaluation confirmed that, in addition to being scalable, DFSS achieves very good

performance with increasing data set sizes.

Chapter 6

I/O-Efficient Algorithms for Massive Graphs

In this chapter, we motivate our work on I/O-efficient algorithms for directed graphs,

introduce the terminology and concepts used in this part of the thesis, and give an

overview of previous work on I/O-efficient graph algorithms. We close this chapter

with a summary of the contributions of this second part of the thesis, which are

presented in detail in Chapters 7 and 8.

6.1 Overview

Graphs are ubiquitous in computer science as a means for modelling relationships be-

tween entities. Entities are represented by vertices, and relationships between entities

by edges. Graphs arise naturally in a wide variety of scientific and real-world applica-

tions, including web modelling [41,65,66,87,90], computational biology [126,137,138],

and geographic information systems [13,23,58]. For example, search engines analyze

the web graph to discover web communities, recent multiple sequence alignment al-

gorithms are based on manipulating the de Bruijn graph of the sequences, and route

planning systems model road networks as graphs and find optimal routes by solving

shortest path problems on them.

In recent years, the amount of data available in these applications has caused a

massive increase in the size of the underlying graphs (see Section 6.1.2 for examples

of real-world massive graphs). Due to their size, such graphs cannot be held entirely

in memory and need to reside (at least partially) on disk. When working with such

large graphs in a disk-based setting, the I/O communication generated by traditional

(internal memory) graph algorithms becomes a bottleneck. The reason is that the

graph exploration strategies (e.g., depth-first search, breadth-first search) essential in

all traditional graph algorithms are inefficient on massive graphs (see Section 6.2.1).

This has led to a focus on developing I/O-efficient algorithms for a range of graph

problems.

73

74

Most previous work on I/O-efficient graph algorithms has focussed on developing

provably efficient solutions for undirected graphs and special graph classes; this work

has led to the development of important techniques for designing I/O-efficient graph

algorithms (see Section 6.2.2). Directed graphs pose a much greater challenge and

virtually no theoretical nor algorithm engineering results on I/O-efficient algorithms

for directed graphs are known, except for special graph classes. This lack of results,

both in theory and practice, motivates the study of heuristic approaches for processing

directed graphs I/O-efficiently. Most notably, Sibeyn et al. [121] proposed a depth-

first search (DFS) heuristic that performs extremely well if the vertex set of the

graph fits in memory. Since DFS is the basis for many classical graph algorithms,

this heuristic forms the basis for I/O-efficient solutions to a range of problems.

In this part of the thesis we propose I/O-efficient algorithms for solving prob-

lems on massive directed graphs that fall into this category of efficient heuristics.

In the worst case, their performance is poor, but in practice they perform very well

and can efficiently process graphs beyond the reach of existing algorithms, includ-

ing algorithms based on the DFS heuristic of [121]. Specifically, we address two

important problems for directed graphs: computing strongly connected components

and topological sorting. While Sibeyn et al. used these problems merely as exam-

ples to demonstrate the efficiency of their DFS procedure, we propose I/O-efficient

algorithms specifically for computing strongly connected components and topological

sorting. Computing strong connectivity and topological sorting are the two most fun-

damental connectivity questions one can ask about a directed graph and we develop

practically efficient solutions for them. Next, we review terminology and notation

used in this and the following chapters.

6.1.1 Terminology and Definitions

A graph is a pair G = (V,E) of a set V of vertices and a set E of edges. We

use n := |V | to denote the number of vertices and m := |E| to denote the number of

edges in G. Each edge e ∈ E is a pair (v, w), for some v, w ∈ V , where we call v and

w the endpoints of e. If (v, w) ∈ E, then v and w are incident with the edge (v, w),

and we also say that v and w are adjacent or neighboring vertices of G. The degree

of a vertex v is the number of neighbors of v.

75

A path from v to w in a graph G is a sequence of vertices x1, x2, x3, . . . , xn such

that (xi, xi+1) ∈ E, for all 1 ≤ i ≤ n, x1 = v and xn = w. A cycle is a path where

the first vertex and the last one are the same.

We say that G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. In

this case, we write G′ ⊆ G. A spanning graph of G is a subgraph of G that contains

all vertices of G.

A graph G is called connected if every pair of vertices is connected by a path. A

maximal connected subgraph of G is called a component or a connected component

of G. An acyclic graph, one containing no cycles, is called a forest. A connected

forest is called a tree. The vertices of degree 1 in a tree are its leaves. A spanning

tree of G is a spanning graph that is a tree. A graph has a spanning tree only if it is

connected. A spanning forest of G is a spanning graph whose connected components

are spanning trees of the connected components of G

We say a graph is directed if its edges are ordered pairs, that is, edges (v, w) and

(w, v) are different edges ((v, w)
= (w, v)). If the pairs are unordered, that is, edges

(v, w) and (w, v) are considered to be the same edge ((v, w) = (w, v)), then the graph

is undirected.

For an edge e = (v, w) of a directed graph, we call v the tail and w the head

of e. An in-edge (resp. out-edge) of v is an edge with v as its head (resp. tail).

An in-neighbor (resp. out-neighbor) of v is the tail (resp. head) of an in-edge (resp.

out-edge) of v. The in-degree (resp. out-degree) of v is the number of its in-edges

(resp. out-edges).

A directed graph G = (V,E) is strongly connected if, for every vertex pair (v, w),

there exists a directed path from v to w. The strongly connected components (SCCs)

of a graph are its maximal strongly connected subgraphs (SCSGs). Figure 6.1a shows

a directed graph whose strongly connected components have vertex sets {g}, {h, i, j},
{b, a, c, f}, {d} and {e}. All pairs of vertices in each component are mutually reach-

able. On the other hand, the vertices d and e, for example, belong to different SCCs

since vertex d cannot be reached from vertex e.

A topological ordering of a directed graph G = (V,E) is an ordering of its vertices

such that for every edge (v, w) ∈ E, v precedes w in the ordering. See Figure 6.1b. A

graph may have more than one topological ordering. For example a second topological

76

a b

d c

e

f h

g

j i

(a) A directed graph; the SCCs are
{g}, {h, i, j}, {b, a, c, f}, {d}, {e}.

a b

f g

d ec

(b) A directed acyclic graph; a, b, e, d, c, g, f
is a topological ordering.

Figure 6.1: Illustration of directed graphs.

ordering for the graph in Figure 6.1b is a, b, e, d, g, c, f . A directed graph has a

topological ordering if and only if it is acyclic, that is, does not have any directed

cycles.

Note that topological ordering and strong connectivity are orthogonal concepts,

as the SCCs of an arbitrary directed graph form a directed acyclic graph (DAG).

6.1.2 Massive Graphs in the Real-World

I/O-efficient graph algorithms are motivated by, and find applications in, a range of

application areas dealing with massive graphs. The following is a list of examples of

such applications with a particular focus on ones that deal with directed graphs and

may benefit from the algorithms developed in Chapters 7 and 8.

Web graphs. Web crawls represent snapshots of the World Wide Web and can pro-

duce graphs with billions of edges. In these graphs vertices represent the web

pages and edges are the hyperlinks between them. A large amount of research

has focused on studying these graphs [41, 65, 66, 87, 90] in order to get some

insight into the web’s topological properties.

A typical problem in the analysis of web graphs is to identify web communities,

which is the problem of finding clique-like structures. As a first approximation

one may also consider strongly connected components to be communities. Some

studies have analyzed the distribution of the sizes of the strongly connected

components in the graph, and discovered that the degree distributions follow a

77

power-law, and the graph has a bow-tie structure [65, 66].

Computing PageRank [40] (the basis of Google’s search engine) is also consid-

ered to be a challenging problem with respect to web graphs. PageRank is a

measure used for computing the relative importance of web pages for searching.

Since the web graph is continuously evolving, a problem here is to efficiently

compute PageRank on such graphs [48, 62].

Terrain graphs. Remote sensing technology has permitted the acquisition of enor-

mous amounts of high-resolution terrain data. For example, NASA’s Earth

Observing System Data and Information System (EOSDIS) holds a collection

of satellite data comprising 4.2 petabytes [10]. Laser based LIDAR scanning

technology can map the earth’s surface at a very high resolution; for example, a

2m resolution map of Denmark is about 1.7 terabytes in size [104]. Geographic

Information Systems (GIS), typically store terrains as elevation models, either

in the form of Triangulated Irregular Networks (TINs) or as two-dimensional

grids. In a TIN, the terrain is represented by a planar triangulation, naturally

forming a graph. In a grid, the terrain can be viewed as a grid graph whose

vertices correspond to grid cells and and whose edges connect vertices that

correspond to neighboring cells.

Terrain analysis is central to a range of important GIS applications concerned

with the effects of topography. Typical problems here are flow routing and flow

accumulation [23, 104]. Solving such problems can, for example, reveal areas

areas susceptible to floods or predict the location of streams. Searching for the

optimal route is also important in GIS applications for route planning, where

road networks are modelled as graphs and shortest-path-like computations are

performed on them [58].

Graphs in GIS are often planar, which has motivated a significant amount of

work in I/O-efficient algorithms for planar graphs (e.g., [24, 27, 28, 95]).

Social networks. Social networks are usually represented in terms of graphs with

the vertices representing entities (e.g., individuals, organizations) and the edges

representing ties or relationships (e.g., friendship, trust, common interest, finan-

cial transactions). Social networking web sites such as Facebook and LinkedIn

78

generate massive graphs and are continuously evolving. LinkedIn has over 80

million members [5] and Facebook alone currently has over 500 million active

users [3] and continues to grow.

Similar to web graphs, a typical problem in the analysis of social network graphs

is maximum clique detection [11] to find communities of people [82]. In finan-

cial transaction networks, grouping people based on such information can be

potentially useful in detecting money laundering rings [92]. Security intelligence

applications use this information as well to identify key players in terrorist net-

works [52].

Call graphs. Telephone call graphs are formed by logging phone calls over a certain

period of time. In this graph, vertices represent telephone numbers and there is

a directed edge between two vertices if there has been a call from one number

to another within the observed time frame. The call graphs created by telecom-

munications companies can be massive. For example, a company like AT&T

generates 4 billion phone call records per day—with over 400 million unique

telephone numbers—including 2 billion text messages [51], this amount of data

easily makes the size of these graphs reach several terabytes.

A typical problem on telephone call graphs is identifying local communities (e.g.,

by detecting the presence of bipartite cores) [107]. Services providers can use

this information to target them with better incentives for retention. Another

application is identifying fraudulent behaviour [33, 51]. Some studies have also

reported on various topological properties of these massive call graphs, including

degree distributions, strongly connected components, and bipartite cores [107].

Biological graphs. Due to the scientific advances in DNA analysis, more precisely in

the field of genomics, large genomes (e.g. human, mouse) are completely avail-

able. For example, the Broad Institute sequencing center [2] generates large-

scale genomic data in the order of 50 billion nucleotide bases a year [38]. Graphs

provide a powerful way for modelling this kind of biological data (e.g., biological

pathways [126] and protein interaction networks [112]). In these graphs, vertices

represent cellular entities (proteins, genes, mRNA, etc.) and edges correspond

to interactions between them.

79

A problem arising in the study of these graphs is approximate graph match-

ing [126, 127]. For example, protein interaction networks for individual species

are often matched to determine similarities and differences across species.

Another important problem in comparative genomics is multiple sequence align-

ment. Recent multiple sequence alignment algorithms [137,138] operate on the

sequences’ de Bruijn graph and reduce the problem to a traversal of an acyclic

subgraph of this graph. Knuth Reinert’s group in Berlin is developing a library

of computational biology algorithms [72].

6.2 State of the Art

Massive graphs pose major challenges mainly because the graph exploration strategies

at the heart of the vast majority of graph algorithms seem inherently inefficient in

external memory. Section 6.2.1 discusses the main difficulties for I/O-efficient graph

exploration. As a result, problems on massive graphs have been attacked from two dif-

ferent directions: on one hand, attempting to develop I/O-efficient graph exploration

methods and, on the other hand, solving graph problems using alternative strategies

not based on graph exploration. Section 6.2.2 gives an overview of techniques used

in both approaches.

6.2.1 Difficulties with I/O-Efficient Graph Exploration

Traditional internal-memory graph algorithms often analyze the structure of a graph

using graph exploration. Breadth-first search (BFS) and depth-first search (DFS) are

two such exploration strategies that are easy to implement, are fast as long as the

graph fits in memory, and surprisingly provide much information about the structure

of the graph. The latter is true particularly for DFS. On the other hand, not much

is known about implementing these exploration strategies I/O-efficiently.

There are two main challenges associated with using traditional graph exploration

methods for computation on graphs stored on disk. (1) Remembering visited nodes

results in one disk I/O per edge in the worst case. (2) Random accesses to the

adjacency lists of the vertices may result in one disk I/O per vertex. Thus, typical

implementations of DFS, for example, end up performing O(n+m) I/Os in the worst

80

case, which is extremely inefficient on graphs beyond memory size.

The lack of locality in their data access patterns is a problem for all graph ex-

ploration strategies, at least on directed graphs. Due to the strong reliance on such

graph exploration strategies in traditional graph algorithms, even simple problems,

such as topological sorting, become challenging on massive graphs.

6.2.2 Techniques for I/O-Efficient Graph Algorithms

Due to the inefficiency of classical graph exploration algorithms in an external setting,

problems on massive graphs have been addressed using two different approaches: on

one hand, attempting to develop I/O-efficient graph exploration algorithms and, on

the other hand, solving graph problems using alternative techniques. This section

reviews the techniques used in both approaches. Specifically, Subsection 6.2.2.1 dis-

cusses techniques for speeding up graph exploration, and Subsection 6.2.2.2 explores

non-exploration-based techniques.

6.2.2.1 Techniques for Speeding Up Graph Exploration

The techniques presented in this subsection address the two problems with graph

exploration: remembering visited vertices and random access to adjacency lists.

The buffered repository tree. The buffered repository tree (BRT) [42] addresses

the problem of remembering visited vertices in graph traversals. It allows the inser-

tion of edges and the extraction of all edges with a given tail. A visited vertex v

inserts all its in-edges into the BRT and can distinguish which of its out-edges lead

to previously visited vertices by extracting all edges with tail v. Using this data

structure Buchsbaum et al. [42] obtained directed BFS and DFS algorithms with I/O

complexity of O((n+ m
B
) log n).

Clustering. For directed graphs, the BFS and DFS algorithms of [42] are the best

known, both because there is no known method for tracking visited vertices than the

BRT and because there is no known method for avoiding random accesses to adjacency

lists. The same is true for undirected DFS. For undirected BFS and shortest paths, it

is easier to track previously visited vertices, making the random accesses to adjacency

81

lists the only problem. This led to an undirected BFS algorithm with I/O complexity

O(n+sort(m)) [106] and a single-source shortest path algorithm with I/O complexity

O(n + m
B
log2

n
B
) [88]. To overcome the problem with random accesses to adjacency

lists in BFS, Mehlhorn and Meyer proposed a clustering-based approach [98]. The

idea is to form o(n) groups of vertices that are close to each other in the graph. When

the first vertex in such a vertex cluster is visited, the adjacency lists of all vertices in

the cluster are loaded into a hot pool. Adjacency lists are accessed by scanning the

hot pool. Thus, this approach trades random accesses for a higher scanning cost of

adjacency lists (in the hot pool). By choosing the parameters of the cluster partition

carefully, this leads to a BFS algorithm with I/O complexity O(
√
n·m
B

+MST (n,m)),

where MST (n,m) is the cost of computing a (minimum) spanning tree of the graph.

Meyer and Zeh extended these ideas to shortest paths [102, 103]. These ideas seem

entirely ineffective for DFS on directed graphs.

Graph separators and divide-and-conquer. The algorithms discussed so far

are efficient for dense graphs (m = Ω(Bn)), with I/O complexity of O(sort(m))

or O(m
B
log n). The (mostly unsolved) challenge is obtaining efficient algorithms for

sparse graphs. For some special graph classes, most notably planar graphs, graph sep-

arators have proven useful for obtaining (nearly) I/O optimal algorithms for BFS [21],

DFS [24], shortest paths [93] and a number of other problems [26–28]. Planar graphs,

have the property that there exists a set of O(n/
√
r) “separator vertices” whose re-

moval breaks the graph into connected components of size at most r. For r = B2

and M ≥ B2, each such piece fits in memory. By processing each piece in turn, one

can construct a graph on the separator vertices that has O(n) edges and captures

the interaction between these vertices. For example, for shortest path computations,

each separator vertex has the same distance from s—the source vertex—in this com-

pressed graph as in the original graph. The compressed graph is dense, which allows

the efficient solution of a range of problems on this graph. The final solution is then

obtained by processing each memory-sized subgraph of the original graph in turn.

For example, for shortest paths, the distances from s to every vertex in such a piece

can be computed from the distances of the separator vertices on the boundary of the

piece.

82

For DFS on planar directed graphs, a different type of separator, called a path

separator, has been employed to recursively partition the graph in a balanced fashion,

leading to a divide-and-conquer algorithm for this problem, with I/O complexity

O(sort(n) log n
M
) [28].

6.2.2.2 Non-Exploration-Based Techniques

Motivated by the difficulty of I/O-efficient graph exploration, a number of techniques

to solve graph problems without using graph exploration have been developed, par-

ticularly for undirected graphs. These techniques are often borrowed from parallel

algorithms for the same problem. In this section, we review them and discuss their

applicability.

Graph contraction. The key idea in graph contraction is to reduce the size of

the input graph G while preserving the properties of interest (e.g., connectivity, pla-

narity). This is achieved by identifying edge-disjoint subgraphs of G, contracting

each subgraph and representing it by a graph of smaller size (typically a single ver-

tex). Commonly, this procedure is applied recursively until the number of vertices is

reduced to memory size, at which point an efficient semi-external algorithm is used

to solve the problem on the contracted graph—a semi-external algorithm can process

the edges of the graph I/O-efficiently if the vertices fit in memory. A solution for G

is constructed by undoing the contraction. The basic operation is edge contraction,

which means that the edge is replaced with a vertex and all edges incident to either

one of the endpoints are updated.

Graph contraction was initially studied in the context of parallel algorithms and

was extended to external memory for solving connectivity problems on undirected

graphs. For example, it has proven useful in the development of I/O-efficient algo-

rithms for computing the connected components [12,49,106,123], biconnected compo-

nents [49] and minimum spanning trees [12,21,61], where the connectivity information

is preserved during edge contraction. Graph contraction has also been used to com-

pute list ranking I/O-efficiently [49] (see below).

The graph contraction approach works remarkably well in external memory due

to the fact that vertices do not need to be processed in any particular order, and each

83

contraction step can be implemented efficiently. However, for the case of directed

graphs, the challenge is how to select the edges to contract while maintaining the

properties of interest. The main problem is that edge contraction does not necessarily

preserve the reachability of vertices in a directed graph: for two vertices v and w with

no path from v to w in the original graph, a directed path from v to w may exist in

the contracted graph.

List ranking. A list L is a collection of vertices x1, x2, . . . , xn, such that each

vertex xi, except the last one (tail), stores the ID of its successor succ(xi) in L, no

two vertices have the same successor and every vertex can reach the tail by following

the successor pointers. In the list ranking problem we want to compute, for every

vertex xi, its distance from the tail (or head) of L, i.e., the number of edges on the

path from the head of L to xi or from xi to the tail of L.

A number of algorithms solving this problem using O(sort(n)) I/Os have been

proposed [49, 123]. The practically fastest one is due to Sibeyn [123].

Euler tour. An Euler tour of a tree T = (V,E) traverses every edge exactly twice,

once in each direction. Such a traversal produces an ordering of the vertices or

edges capturing the structure of the tree, and can be computed quite easily using

O(sort(n)) I/Os.

The Euler tour technique and list ranking have also been used to break a spanning

tree of a graph into O(n/μ) pieces whose vertices have distances at most μ from each

other. This is exactly the clustering used in the BFS algorithm of [98] discussed

earlier.

List ranking, in combination with the Euler tour technique can be used to solve

a wide range of problems on trees [94]. One example is the rooting of an undirected

tree T , which is to direct all edges of T away from a root vertex given as part of the

input. Given a rooted tree T , the Euler tour technique and list ranking can be used

to compute a preorder and postorder numbering of the vertices of T , or the sizes of

the subtrees rooted at the vertices of T , and a number of other problems.

Time-forward processing. Time-forward processing [20,49] is a technique used to

solve the following “graph evaluation” problem: given a DAG each of whose vertices

84

has a label φ(x), process its vertices in topologically sorted order and compute for each

vertex x, a new label ψ(x) from φ(x) and the ψ-labels of its in-neighbours. A simple

example of this type of problem is the evaluation of a Boolean circuit represented as

a DAG: φ(·) assigns a Boolean function to each vertex, turning it into a logical gate;

ψ(x) is the output of the gate represented by vertex x, given the inputs it receives

from its in-neighbours.

Arge developed a practical O(sort(n)) algorithm [20] which makes use of a priority

queue for solving this problem, improving on an earlier solution by Chiang et al. [49].

The topological sorting algorithm we propose in Chapter 8 uses the time-forward

processing algorithm of Arge as building block; we therefore discuss it in more detail

next.

The basic idea in the priority-queue based approach is that when we compute the

value for a vertex v, we insert the computed result of the function into the priority

queue with priority w, for each edge (v, w) in the DAG. When we process vertex w,

all elements with lower priority have already been processed, since we processed the

vertices in topological order, and we can extract the inputs for vertex w from the

priority queue, using DeleteMin operations.

Time-forward processing requires the vertices of the DAG to be given in topolog-

ically sorted order. Since no I/O-efficient topological sorting algorithm is known to

date, time-forward processing has been applied only in situations where a topological

ordering of the vertices can be obtained by using secondary information about the

structure of the DAG. Nevertheless, it has been used successfully in solutions to a

number of problems, including shortest paths on planar graphs [96], BFS and DFS

on outerplanar graphs [95], and flow computations on grid graphs [23].

6.2.3 Engineering of Graphs Algorithms

The techniques discussed above give us the tools to approach a wide variety of prob-

lems for undirected graphs, but none of them allow us at the moment to make any

progress on directed graphs at least in the worst case. Nevertheless, in many applica-

tion areas dealing with massive graphs, particularly web modelling and the study of

other types of social networks, the graphs are directed, and much valuable information

is discarded if the edge directions are ignored. Additionally, while much theoretical

85

work has focused on solving graph problems I/O-efficiently using these techniques,

much less is known about the practical performance of the developed algorithms even

on undirected graphs. The main reason is their algorithmic complexity and the con-

stant factors involved. In many cases there are no publicly available implementations

of the used primitives—list ranking, Euler tour construction, etc. This makes im-

plementing any I/O-efficient graph algorithm a formidable task, as it requires the

implementation not only of the actual algorithm to be tested but also of a wide range

of more elementary building blocks.

Results for directed graphs. The lack of provably efficient algorithms for solving

problems on general directed graphs has motivated work on heuristic techniques. The

most successful effort so far in this regard is the semi-external DFS algorithm by

Sibeyn et al. [121]. Since DFS is a central building block used in many classical

graph algorithms, the algorithm of [121] provides a general tool for solving problems

on directed graphs efficiently if the vertices fit in memory. If, on the other hand,

the size of the vertex set exceeds the memory size, the performance of the algorithm

deteriorates to that of an internal-memory DFS algorithm. For directed graphs, the

semi-external DFS algorithm by Sibeyn et al. [121] is the only work we are aware of

that focuses specifically on solving fundamental problems on directed graphs.

Results with undirected graphs. In contrast to the lack even of practical results

for general directed graphs, the set of implementations of algorithms for undirected

graphs is growing. The existence of libraries of I/O-efficient algorithms has also

contributed to the implementation of I/O-efficient algorithms for undirected graphs.

Examples of these libraries include TPIE [25, 129] and STXXL [59, 60] which allow

the implementation of I/O-efficient algorithms using high-level primitives and provide

fundamental data structures such as stacks, priority queues and search trees. For

example, by building on top of STXXL, several efforts have been made to engineer and

evaluate the practical performance of algorithms for problems on undirected graphs

in recent years. Ajwani et al. [17, 18] compared experimentally the BFS algorithms

of Munagala and Ranade [106] and Mehlhorn and Meyer [98], and demonstrated that

the BFS algorithm of Mehlhorn and Meyer achieves very good performance on a

number of graph classes if implemented carefully. Dementiev et al. [61] engineered

86

a Minimum Spanning Tree (MST) implementation based on ideas from the external

connected components algorithm by Sibeyn [123]. Their algorithm is theoretically

inferior to the MST algorithms of [12,21,49] but performs extremely well in practice.

Schultes [118] provided implementations for computing connected components and

spanning forests also based on ideas from Sibeyn’s algorithm. Meyer and Osipov [100]

engineered a practical shortest path algorithm for general undirected sparse graphs.

Other related work includes a large body of work on preprocessing large graphs,

particularly road networks, for fast shortest-path queries. The most recent results in

this area, which include references to the earlier papers, include [32, 70, 73, 115].

6.3 Contributions

Computing strongly connected components and topological sorting are important

building blocks for algorithms in a number of application areas. For example, se-

quence analysis using de Bruijn graphs first identifies and eliminates cycles in these

graphs and then topologically sorts the resulting graph to prepare it for further pro-

cessing [137, 138]. Traditionally, these problems are approached using graph explo-

ration strategies. However, as we have seen in this chapter, graph exploration is very

difficult in external memory, and thus, these problems become challenging on massive

graphs.

In this part of the thesis we engineer algorithms for computing the strongly con-

nected components and topological sorting of massive directed graphs. These are the

two most fundamental connectivity questions one can ask about a directed graph.

Our goal is (a) to provide fast algorithms for these problems that can handle larger

graphs than a semi-external approach [121] and outperform any internal-memory al-

gorithm on large inputs, and (b) to identify the techniques that are also useful for

solving problems on directed graphs, at least for designing heuristics.

The SCC algorithm presented in Chapter 7 is based on graph contraction: it

identifies and contracts strongly connected subgraphs until the graph is small enough

to fit completely in memory, at which point we can compute its strongly connected

components using a standard DFS-based algorithm. We investigate its behavior on

a variety of graph classes. The results presented here show that our algorithm out-

performs the method of [121] and can efficiently process bigger graphs than their

87

semi-external approach. Our results demonstrate that graph contraction, which is

the key to success for connectivity problems on undirected graphs, can be used at

least as a heuristic to solve strong connectivity. The results have appeared in [55].

In Chapter 8 we present our topological sorting algorithm. It starts by computing

an initial ordering of the vertices that satisfies a subset of the edges. Through itera-

tive improvement, which uses techniques such as time-forward processing, the set of

satisfied edges is grown until the obtained numbering satisfies all edges, that is, is a

topological ordering. The results we present in this thesis show that our algorithm

is not only competitive to the method of [121] in a semi-external mode, but it is also

able to process large graphs where neither the vertices nor the edges fit in internal

memory. We also compare our algorithm to external-memory adaptations of parallel

and internal-memory topological sorting algorithms that can be considered natural

competitors to our approach. The results have recently appeared in [16].

Chapter 7

External-Memory Strong Connectivity

Identifying the SCCs is one of the most fundamental structural questions one can ask

about a directed graph. In this chapter we present a contraction-based algorithm for

computing the SCCs of a massive directed graph. The intuition behind our algorithm

is that we hope to reduce the size of the input graph G until it fits in memory

by repeatedly finding and contracting non-trivial strongly connected subgraphs. By

contracting strongly connected subgraphs into a single vertex we do not change the

connectivity properties of the input graph. Hence, once the graph fits in memory, we

can use an efficient internal-memory strong connectivity algorithm to finish computing

the SCCs of G.

Our experiments confirm that the algorithm performs remarkably well in practice.

The strongest competitor is the semi-external algorithm by Sibeyn et al. [121]. Our

algorithm substantially outperforms the algorithm of [121] on most of the graphs

used in our experiments and never performs worse. It thus demonstrates that graph

contraction, which is the most important technique for solving connectivity problems

on undirected graphs I/O-efficiently [12,21,49,106], can be used to solve such problems

also on directed graphs, at least as a heuristic.

7.1 Introduction

In internal memory the SCCs of a graph can be computed in linear time, e.g., using

algorithms by Kosaraju’s [53], Tarjan’s [125] or Dijkstra’s [64]. All of them require a

depth-first traversal of the graph and, thus, incur O(n+m) I/Os when run in external

memory, as discussed in Section 6.2.1

This chapter is organized as follows. In Section 7.2 we give a detailed description

of the algorithm. In Section 7.3 we lay the groundwork for the different primitives

used in its implementation. Finally, in Section 7.4 we present our experimental results

on various synthetic and real graphs.

88

89

7.2 A Contraction-Based Strong Connectivity Algorithm

This section describes our contraction-based SCC algorithm, referred to as EmSCC

throughout this chapter. This algorithm consists of two phases: a preprocessing phase

and a contraction phase. The contraction phase looks for SCSGs in the input graph G

and contracts each into a single vertex, thereby reducing the size of G without altering

its connectivity. This process continues until the graph fits in memory, at which

point the algorithm loads it into memory and computes its SCCs using an internal-

memory algorithm. In this sense, EmSCC resembles the connectivity algorithm for

undirected graphs by Chiang et al. [49]. In the undirected case, however, the graph

is guaranteed to fit in memory after a logarithmic number of contraction steps, while,

in the directed case, the algorithm succeeds only if each round finds sufficiently many

and large SCSGs to contract.

The contraction phase searches for SCSGs by loading memory-sized subgraphs of

G into memory and computing their SCCs. The preprocessing phase tries to arrange

the vertices and edges of G so that the chance of finding non-trivial SCCs in these

subgraphs is maximized.

Next we discuss these two phases in more detail. Throughout this discussion, we

use n and m to refer to the numbers of vertices and edges in the graph, respectively;

M is the size of the main memory. Furthermore, we assume that the input graph is

connected. It is not hard, however, to extend the algorithm to disconnected graphs

with little or no impact on its performance.

7.2.1 Preprocessing Phase

The preprocessing phase of EmSCC is conceptually simple. It arranges the vertices

of G in a list V0 in the order of their first occurrences along an Euler tour of a spanning

tree T of G. See Figure 7.1 for an illustration. It stores the edges in a list E0, which

is the concatenation of “one-sided” adjacency lists of the vertices in V0 arranged in

the same order as the corresponding vertices in V0. The adjacency lists are one-sided

in the sense that an edge (x, y) is stored in the adjacency list Ex of x if x > y, and

in Ey otherwise; vertices are compared by their positions in V0.

The contraction phase discussed in Section 7.2.2 below sweeps the two lists V0 and

90

Algorithm 4: Preprocess(G)

Input: G = (V,E).
Output: Vertex list V0, edge list E0.

1 Compute a spanning tree T of G;
2 Compute an Euler tour L of tree T ;
3 Compute the rank of every edge e in L;
4 Store in V0 the vertices of G numbered and ordered according to their first
occurrences in the tour;

5 Store in E0 the concatenation of one-sided adjacency lists of the vertices in V0;
6 return V0 and E0;

E0 in tandem and processes maximal groups of consecutive vertices in V0 that induce

memory-sized subgraphs of G. The memory-sized subgraphs it processes correspond

to segments of the Euler tour. Intuitively, the ordering of the vertices in V0 produced

by the preprocessing phase should ensure that the processed subgraphs are connected

or have few connected components (in the undirected sense). Assuming sufficiently

random edge directions and sufficiently many non-tree edges, this should lead to

non-trivial SCCs in the processed subgraphs.

Algorithm 4 shows the high-level procedure for preprocessing. To compute lists

V0 and E0, our algorithm for preprocessing G has to compute the tree T , its Euler

tour, and a ranking of the Euler tour (Steps 1–3). To compute the spanning tree,

we use the MST algorithm by Dementiev et al. [61] (setting all edge weights to 1).

Sorting and scanning the edge set of T suffices to compute an Euler tour of T . To

rank this tour, we use the list ranking algorithm by Sibeyn [123]. Given the ranked

tour, the algorithm finds the first occurrence of every vertex of G in the tour by

sorting and scanning the node list of the tour, numbers the vertices of G in the order

of these occurrences, and places them into V0 in order (Step 4). The edge list E0 is

constructed by sorting and scanning the edges of G three times: twice to label each

edge with the numbers of its endpoints, and once more to arrange the edges in the

order described above (Step 5).

91

0 1 0 2 3 2 4 2 0 8 7 6 7 5 7 8 0

0 1 2 3 4 8 7 6 5

0

1

2

3
4

56

8

7

Figure 7.1: Spanning tree and the Euler tour around it (dashed lines), starting and
ending at vertex 0. Below is the order of the vertices on the tour and their first
occurrence.

7.2.2 Contraction Phase

The contraction phase of EmSCC proceeds in a series of rounds, where each round

produces a more compressed version of G from the previous version by identifying

strongly connected subgraphs of the current graph and contracting them. The high-

level procedure of this phase is presented in Algorithm 5. Let G = G0, G1, . . . , Gr be

the sequence of graphs produced during the contraction rounds; that is, in round i,

the graph Gi is computed from graph Gi−1. The algorithm represents each graph Gi

using two lists Vi and Ei whose structure is identical to that of V0 and E0 described

in the previous subsection.

The ith round partitions Vi−1 into subsets V ′
1 , V

′
2 , . . . , V

′
k of consecutive vertices

such that each induced subgraph G′
j := Gi−1[V

′
j] fits in memory. The algorithm loads

these subgraphs into memory, one by one, identifies their SCCs and contracts them.

More precisely, the ith round scans Vi−1 and Ei−1 in tandem, counting and col-

lecting the vertices and edges in the current subgraph G′
j in memory. Let x be the

first vertex in Vi−1 that belongs to G
′
j, and let nj and mj respectively be the numbers

of vertices and edges currently in G′
j. To decide whether to include the next vertex

y in Vi−1 in G′
j, the algorithm scans Ey and counts the edges whose lower endpoints

92

Algorithm 5: Contract(G)

Input: G = (V0, E0).
Output: The SCCs of G.

1 Let i = 0 and Gi = (Vi, Ei);

// Contraction rounds

2 while |Gi| > M do
3 i = i+ 1;
4 Partition Vi−1 into subsets of consecutive vertices that induce subgraphs of

size O(M);
5 For each such subgraph, compute its SCCs and compress them;
6 Let Vi and Ei be the new vertex and edge list respectively formed from the

compressed graphs;

7 Load Gi into memory and contract;
8 return The set of super-vertices representing the SCCs of Gi;

belong to G′
j, that is, are no less than x; let my be their number.

If nj +1 vertices and mj +my edges fit in memory, the algorithm includes y in G′
j

and partitions the edges in Ey into two groups: those with lower endpoints no less

than x and those with lower endpoints less than x. It loads the former into memory

(thereby adding them to G′
j) and appends the latter to an initially empty edge list

E ′′
i to be processed at the end of this round. Then the algorithm proceeds to the next

vertex in Vi−1.

If adding my edges to G′
j would make it exceed the memory size, the algorithm

declares vertex y to be the first vertex of G′
j+1 and appends its entire adjacency list

to E ′′
i . Next it computes the SCCs of G′

j in memory, contracts each SCC it finds into

a single vertex, and eliminates parallel edges that result from these contractions. Let

us refer to these contracted SCCs as super-vertices. During the contraction phase the

invariant is maintained that every vertex stores the ID of the super-vertex it has been

contracted into. The algorithm writes this mapping information back to Vi−1 and

appends the sorted list of super-vertices to Vi. The edges of the contracted version

of G′
j are appended to an initially empty edge list E ′

i. This finishes the processing

of G′
j , and the algorithm starts to construct G′

j+1 with y as its first vertex. Let us

refer to this procedure of contracting G′
j as a contraction step. This contraction step

is repeated for all graphs G′
1, G

′
2, . . . , G

′
k. See Figure 7.2 for an illustration.

93

(a) Collecting edges of subgraph G′
1 (b) Collecting edges of subgraph G′

2; SCCs of
G′

1 are now contracted

Figure 7.2: Illustration of a contraction step in the ith round. Shaded areas represent
the subgraphs induced by memory-sized groups of edges.

The ith round ends after the last vertex in Vi−1 has been consumed. At this point,

the algorithm discards the edge list Ei−1, but not Vi−1, as the information stored in

Vi−1 is necessary to compute the final component labelling of the vertices of G. If

the algorithm numbers the vertices of Gi in increasing order as it produces them,

Vi already contains the sorted vertex list of Gi. To produce Ei, the endpoints of all

edges in E ′′
i have to be replaced with their corresponding super-vertices in Gi. Since

the edges in E ′′
i are already sorted by their upper endpoints in Gi−1, a single scan of

Vi−1 and E ′′
i suffices to replace those endpoints. To replace the lower endpoints, the

algorithm sorts the edges in E ′′
i by these endpoints and scans Vi−1 and E

′′
i again. Fi-

nally, it concatenates the resulting list with E ′
i, and sorts the concatenation primarily

by upper endpoints (in Vi) and secondarily by lower endpoints. A single scan now

suffices to filter the edges and thus eliminate duplicates from this list, which produces

the edge list Ei of Gi.

7.2.3 Postprocessing

Let Gr be the graph produced by the last round of the contraction phase; that is, Gr

fits in memory. Then the algorithm loads Gr into memory and labels every vertex

in Vr with the SCC containing it. Finally, by undoing the contractions in the vertex

set, one round at a time, the algorithm labels the vertices of G to identify their

membership in these SCCs. This is done by iteratively copying the labels from Vi to

Vi−1, for i = r, r − 1, . . . , 1. See Figure 7.3 for an illustration.

To copy the labels from Vi to Vi−1, the algorithm sorts the vertices in Vi−1 by

their corresponding super-vertices in Vi. Then the algorithm scans Vi and Vi−1 to

94

E0 V0 E1 V1 Er Vr

contraction

propagate labels

...
Gr ≤ M

Figure 7.3: Illustration of postprocessing: In the last round Gr fits in memory. We
label every vertex in Vr with the SCC containing it, and then propagate these labels
back to the original vertices in G.

label every vertex in Vi−1 with the label of its corresponding vertex in Vi. Finally, the

algorithm returns the vertices in Vi−1 to their original order, in preparation for the

next iteration.

It is worth pointing out that our EmSCC algorithm has actually grown out of

an initial strategy where we computed a hierarchical decomposition of G based on

vertex degrees, similar to k-cores [119], and processed the graphs in this decompo-

sition bottom-up in search for SCSGs. This approach produced better grouping of

vertices with slightly better results in the contraction phase; however, constructing

the decomposition was too costly and out-weighted the speed-up we obtained in the

contraction phase compared to EmSCC.

7.2.4 Analysis

The I/O complexity of the EmSCC algorithm can be split into the costs of prepro-

cessing and contraction. The algorithm starts by constructing a spanning tree T of

the input graph G. After T has been built, the algorithm computes an Euler tour

around T . Next, the algorithm ranks the vertices in the tour. Finally, it assigns (by

scanning and sorting) to each vertex v the rank in the tour of the first occurrence

of v. The cost of constructing the spanning tree is O(sort(m) log(n/M)) I/Os using

the method of [61];. The construction of the Euler tour and list ranking of n ele-

ments both take O(sort(n)) I/Os (see Section 6.2.2.2). Assigning ranks to vertices

95

and labelling the edges with the assigned ranks requires additional O(sort(m)) I/Os.

Hence, the preprocessing costs O(sort(n+m) log(n/M)) I/Os in total.

Each contraction round i incurs a constant number of scans of O(ni) vertices and

O(mi) edges, where ni and mi are the number of vertices and edges, respectively, that

resulted from contractions in round i− 1, in addition to a number of sort operations

on the edges, and the internal memory computation. Scanning the vertex set and the

adjacency lists to collect the vertices and edges that induce memory-sized subgraphs

takes O(scan(ni+mi)) I/Os. Computing SCCs in memory causes no I/Os. Collecting

the super-vertices and edges between SCCs that resulted from contractions requires

further O(scan(ni + mi)) I/Os. Edges between subgraphs are sorted and scanned

for remapping and filtering out duplicates, causing O(sort(mi)) I/Os. Consequently,

each round i takes O(scan(ni +mi) + sort(mi)) = O(sort(mi)) I/Os.

The overall running time of the algorithm ultimately depends on two factors: (a)

the number of contraction rounds needed and, (b) the amount of contraction achieved

in each round. If, for instance, the number of rounds is large but the size of the input

graph decreases geometrically due to contractions, then we can bound the cost of our

algorithm by O(sort(m)). Similarly, if the number of rounds is constant, the cost is

bounded by O(sort(m)) times the number of rounds. However, it may happen that

we need many rounds with very little contraction in each one or, as our experiments

show, we may not see any contraction at all after certain number of rounds.

7.3 Implementation Details

EmSCC is built on various algorithmic primitives, each of which has an impact on the

running time of the algorithm. To compute V0 and E0 (Section 7.2.1), for example, the

algorithm has to compute a spanning tree, its Euler tour, and a ranking of the tour.

As we did not have any implementations of these primitives available, apart from the

MST algorithm, we implemented all of them. To compute the spanning tree, we used

the minimum spanning tree (MST) algorithm of Dementiev et al. [61]. Computing

the Euler tour is fairly simple, as all that is required is sorting and scanning the edge

set of the tree [94]. To rank the tour, we implemented the list ranking algorithm of

Sibeyn [123]. In this section we discuss implementation choices we made in order to

improve the algorithm’s performance.

96

We implemented EmSCC in C++ and using the STXXL library [60], which pro-

vides I/O-efficient counterparts of the C++ STL containers and algorithms. In par-

ticular, we used STXXL vectors to store the vertex and edge lists of graphs, and the

STXXL sorting algorithm to perform all sorting steps in our algorithm.

External-memory graph representation. As already discussed, each graph Gi

is represented by a vertex list Vi and an edge list Ei. In our implementation, every

vertex in Vi was represented using two integers, one being its own ID, the other one

the ID of the corresponding super-vertex in Gi+1. Edges were represented as pairs of

vertex ID’s, that is, using two integers. The only exception was the addition of an

extra integer to represent the edge weight up to and including the MST computation.

This could have been avoided by modifying the MST implementation to compute an

arbitrary spanning tree of an unweighted graph. We did not do this, as the MST

computation did not account for a major part of the running time of our algorithm.

MST algorithm. We used the MST algorithm of [61] to compute the spanning tree

T in the preprocessing phase. The implementation was available from [117]. The al-

gorithm is a sweeping algorithm, which iteratively removes vertices by contracting the

lightest edge incident to each processed vertex. This strategy can be implemented us-

ing an external priority queue or using an I/O-efficient bucket structure. The default

implementation uses a bucket structure, as it results in slightly better performance;

so we had no reason to change this.

Euler tour. To compute the Euler tour of T , we used the standard strategy. We

created two copies (x, y) and (y, x) of each spanning tree edge (x, y) and sorted the

resulting edge list by their first vertices. Then we scanned the sorted edge list and,

for each pair of consecutive edges, (x, y1) and (x, y2), incident to the same vertex x,

we made edge (x, y2) the successor of edge (y1, x) in the Euler tour. This was easily

implemented by storing the edges in an STXXL vector and using the STXXL sorting

algorithm to implement the sorting step.

List ranking. The list ranking algorithm of [123] is a sweeping algorithm similar

to the MST algorithm of [61]. The down-sweep removes vertices one by one from

97

the list until only one vertex remains. For each removed vertex v, its two incident

edges are replaced with a weighted edge between v’s neighbours; the weight equals

the length of the sublist between these two neighbours. The up-sweep re-inserts the

removed vertices in the opposite order and computes the rank of each vertex v from

the rank of one of the two vertices that became adjacent as a result of the removal of

v in the down-sweep.

As discussed in [123], this algorithm can be implemented using a bucket structure,

similar to the one used in the MST algorithm, to pass information between vertices

in the two sweeps. An alternative implementation uses a priority queue and two

stacks. Since our focus was not on engineering an optimal list ranking algorithm, we

opted for the easier implementation using a priority queue. Moreover, similarly to

the MST computation, computing list ranking did not account for a major portion

of the running time of the algorithm.

Internal-memory SCC algorithm. In theory, when we talk about I/O complex-

ity, it is not relevant which internal-memory algorithm we use to process the data

loaded into memory; in practice, however, the running times of the used internal-

memory algorithms can have a significant impact on the algorithm’s overall running

time. The running times of different linear-time SCC algorithms differ by constant

factors and, as argued in [99], it is desirable to use a one-pass algorithm. To compute

the strongly connected components of a graph loaded into memory, we used the one-

pass strong connectivity algorithm by Djikstra [64]. (For a more recent description

of this algorithm, see [28].) The implementation of this algorithm requires two stacks

to keep track of partially identified SCCs.

The size of the subgraphs we process in internal memory has a substantial impact

on the algorithm’s performance. The reason is that the bigger the subgraphs the

higher the chances are to find long cycles to contract. As such, we have two imple-

mentation choices which, independently, increase the available memory for subgraph

processing: use of disk-based stacks in the SCC algorithm and, use of a space-efficient

internal-memory graph representation. Thus, in order to minimize the memory re-

quirements of the stacks used in the SCC algorithm, we used STXXL stacks; since n

stack operations take O(n/B) I/Os on external stacks, this had almost no impact on

98

the time spent on stack operations, but it limited the memory footprint of the stacks

to 4 pages and thus freed up space for storing the graph in memory. Furthermore,

stacks are very I/O-efficient structures [60]. Next, we describe the internal-memory

graph representation we use.

Internal-memory graph representation. To maximize the size of the subgraphs

that can be processed in internal memory in each round of EmSCC, we used a fairly

compact graph representation in internal memory, consisting of two arrays: an edge

array and a vertex array. The edge array contained the concatenation of adjacency

lists of the vertices. Since the SCC algorithm only needed access to the out-edges

of each vertex, only those edges were stored in the adjacency lists. When accessing

an adjacency list, it was known to which vertex this adjacency list belonged. Hence,

the tail vertex of every edge did not have to be stored explicitly. This allowed us

to represent every edge using a single integer storing the head vertex of the edge.

Figure 7.4 shows an example of this representation.

We represented every vertex using a two-integer record in the vertex array. The

first integer represented the SCC containing this vertex (once identified), the other

the index of the first edge in its adjacency list in the edge array. Vertex ID’s did not

have to be stored explicitly, as a consecutive numbering of the vertices allowed us to

use the position of a vertex in the vertex array as its ID.

Since this representation stores edges in a different order than on disk, it was nec-

essary to sort the edges by their tails to construct the internal-memory representation

of a graph G′
j from its external one. This required the use of an initial edge represen-

tation using both its endpoints during the construction of the internal-memory graph

representation. Once the edges were arranged in the right order, we dropped their

tail endpoints, thus halving the memory requirements of the representation. Since

the ability of our algorithm to identify SCCs improves with the size of the subgraphs

it can process in memory, we decided to process subgraphs that occupied all of the

available main memory (minus some buffer blocks for caching used by the STXXL

vectors) using the compact representation. As a result, the initial sorting step re-

quired to construct this representation used the STXXL external sorting algorithm

to sort up to 2M data, where M denotes the memory size. Since this is only twice

99

Figure 7.4: Example graph with 11 vertices and 13 edges. Internal-memory repre-
sentation of the graph. The numbers in the array “vertices” are the starting indexes
of the adjacency lists in the array “edges”; the ID of the SCC of the vertex is not
shown.

the memory size, sorting such an edge list takes O(M/B) I/Os.

Pipelining. Pipelining is a well known implementation technique that has been

used to design faster I/O-efficient algorithms [18, 60, 100]. The idea behind it is to

interface a given sequence of processing elements in such a way that the data is

passed from one element to another without writing intermediate results to disk. Our

implementation of a contraction step (Section 7.2.2) is inspired by pipelining in the

sense that, instead of writing the edges of a contracted subgraph back to disk, and

using them again only in the next round, we immediately make them part of the next

subgraph that is processed in memory. More precisely, once we have contracted a

subgraph, we keep its compressed version in memory, merge it with the next group

of collected edges, and then proceed to contract the subgraph as usual. We continue

in this manner until the compressed version of the current graph occupies a constant

fraction of the available memory. This way, before we ever have to write the results

of a contraction step back to disk, we perform a more aggressive contraction.

7.4 Performance Evaluation

This section describes the results of an extensive set of experiments designed to eval-

uate the performance of EmSCC, compared to the performance of the semi-external

algorithm by Sibeyn et al. (called SeSCC here). SeSCC uses DFS to compute

strongly connected components. Table 7.1 shows the approximate vertex number

100

Main Memory Number of Vertices
512 MB 224

1024 MB 225

Table 7.1: Maximum number of vertices in a graph that SeSCC can process (without
the operating system resorting to virtual memory) using a certain amount of internal
memory.

SeSCC can process without using virtual memory, as discussed in [34]. First we

describe our test environment and the data sets used in our experiments. Then we

discuss the results of our experiments.

7.4.1 Environment and Settings

All experiments were run on a PC with a 3GHz Pentium-4 processor, 1GB of RAM,

and one 500GB 7200RPM IDE disk using the XFS file system. The operating system

was Fedora Core 6 Linux with a vanilla 2.6.20 Linux kernel. The code was compiled

using g++ 4.1.2 and optimization level –O3. All of our timing results refer to wall

clock times in minutes.

Since STXXL allows the specification of the block size for data transfers between

disk and memory, we experimented with different block sizes between 256KB and

8MB. A block size of 2MB resulted in the best performance, since EmSCC accesses

data in a mostly sequential fashion. This block size was used throughout our exper-

iments. Two additional parameters control the amount of memory allocated to the

LRU pager used by STXXL vectors to cache accessed blocks. The first parameter is

the page size as a multiple of the block size. Data is swapped one page at a time. The

other parameter is the number of pages to be cached. We set both parameters to 2,

as the mostly sequential data accesses of EmSCC did not benefit substantially from

a bigger cache, but this would have left less memory for the graphs to be processed

in memory.1

1Using a single disk, a block size of 2MB and a page size of two blocks is equivalent to using a
block size of 4MB and a page size of one block. We chose the former option because we also tested
our algorithms using two disks, in which case the blocks of each page can be assigned to different
disks. Using two disks, our algorithm experienced a speed-up of about 30%. Since the semi-external
algorithm was not able to take advantage of multiple disks, we do not discuss the timings using two
disks in detail here.

101

7.4.2 Data Sets

We tested both algorithms on synthetic graphs and real web graphs. The synthetic

graphs were generated using the same data generator used by Sibeyn et al. [121]. The

web graphs were produced by real web crawls of the .uk domain, the .it domain, and

from data produced by a more global crawl using the StanfordWebBase crawler. They

were obtained from http://webgraph.dsi.unimi.it/, and their characteristics are

shown as part of Tables 7.2 and 7.3. Next we give an overview of the types of synthetic

graphs used in our experiments.

Random: These graphs were generated according to the Gn,m model; that is, m

edges were generated, choosing each edge endpoint uniformly at random from

a set of n vertices.

Cycle: The vertices were evenly spaced on a ring, and every vertex had out-edges to

its d = m/n nearest neighbours.

Geometric 1D: The vertices were evenly spaced on a ring of length n. Edges were

generated by choosing their tails uniformly at random. If u was chosen as the

tail of an edge, vertex v was chosen to be the head of this edge with probability

proportional to αd, where α < 1 and d is the distance between u and v. In our

experiments, we chose α = 0.9.

Geometric 2D: The vertices were placed on a
√
n × √

n grid wrapped around at

the edges to form a torus. Edges were generated as for geometric 1D graphs,

but d was chosen to be the Manhattan distance between u and v in the grid.

Here we chose α = 0.8.

Out-star: Given a star degree s, this graph was generated in �m/s� rounds. In each

round, a tail vertex and s head vertices were chosen uniformly at random. Then

edges were added from the tail to the chosen head vertices. We chose s = 1000

in our experiments.

In-out-star: This construction was similar to the out-star construction, but half of

the rounds directed the generated edges towards the centre of the star. Again,

we chose s = 1000.

102

Simple web: This construction started with a small complete subgraph and added

new vertices by connecting them to the current graph at random. Afterwards,

a small fraction (5% in our case) of random edges were added.

7.4.3 EMSCC vs. SESCC.

In the following we analyze the behavior of EmSCC and SeSCC for the graph classes

described above. Firstly, the discussion focuses on the experimental results with

graphs whose vertex set fits entirely in memory; in this case EmSCC outperformed

SeSCC for all graph classes. Secondly, the results with graphs having a vertex set

much larger than the available memory are examined; here, while SeSCC could not

handle any input, EmSCC was able to process most graphs very fast.

Semi-external mode (|V | ≤ M). Table 7.2 shows the running times of Em-

SCC and SeSCC on different synthetic inputs and on two of the web graphs for the

case where the number of vertices fit into internal memory. For the synthetic graphs

with 225 vertices, EmSCC outperformed SeSCC by a factor between 2 and 4. The

only exception were random graphs and geometric 2D graphs, where SeSCC took

only slightly longer than EmSCC. For the two smaller web graphs, EmSCC outper-

formed SeSCC by a factor between 3 and 4. As can be observed, the performance of

SeSCC depends strongly on the structure of the input graph, whereas (surprisingly)

the performance of EmSCC is much more immune to these variations. Sibeyn et al.

characterized geometric 1D graphs as being among the hardest inputs for their algo-

rithm, and geometric 2D and random graphs as being among the easiest inputs. This

is in line with our observations. On the other hand, cycle graphs were mentioned as

easy inputs in [121], while this was the synthetic input that took SeSCC the longest

to process in our experiments.

Fully external mode (|V | > M). The remaining inputs had at least 226 vertices

and were beyond the reach of SeSCC on our hardware, as the vertex set no longer

fits in memory (see Table 7.1 for approximate vertex numbers it can process without

using virtual memory). Table 7.3 shows the result when |V | > M . We ran SeSCC on

the smallest of these graphs (with 226 vertices and 229 edges), using virtual memory,

103

Graph Size Time (m)

Graph Class n m m/n EM SE SCCs

Random 225 229 16 61 63 12

Cycle 225 229 16 58 208 1

Geom-1D 225 ≈ 229 1 13.2 51 161 11

Geom-2D 225 ≈ 229 1 15.6 58 62 7175

In-out star 225 229 16 63 141 22490

Out-star 225 229 16 65 109 33m

Simple-web 225 229 16 63 113 1.6m

Webgraph 18.5m 298.1m 16.1 29 104 3.8m

Webgraph 41.3m 1,150.7m 25.9 116 517 6.7m

Table 7.2: Experimental results on synthetic and real web graphs with |V | ≤ M .
Notes: (1) For geometric 1D and 2D graphs, m denotes the number of edges requested
to be generated. Since the data generator filters duplicate edges for these two graph
types, the actual number of edges, is less than m. The ratio m/n in the table reflects
this.

and terminated each of these test runs after 12h without SeSCC having produced any

result. Since the performance of SeSCC on the semi-external instances of random

and geometric 2D graphs was comparable to that of EmSCC, we expected that

SeSCC would have the least difficulties to process larger instances of these graph

classes, and we let the experiments on these inputs run for 24h. Again, SeSCC did

not finish within this amount of time.

In contrast, EmSCC was able to process most of the test graphs in under two

hours, while none took more than 2 1/2 hours. The exceptions were the out-star

graphs and the sparsest of the in-out-star and simple web graphs. Section 7.4.4

discusses possible reasons why EmSCC could not process these inputs, which sheds

some light on its limitations.

7.4.4 Factors Affecting the Performance of EMSCC

A number of factors influence the performance of EmSCC. Here we discuss them in

detail.

104

Graph Size Time (m)

Graph Class n m m/n EM SE SCCs

Random 226 229 8 77 —2 45173

Random 227 229 4 109 — 5.2m

Random 226 230 16 133 — 17

Random 227 230 8 159 — 90279

Random 228 230 4 345 — 10.4m

Webgraph 118.1m 1,019.9m 8.6 124 —1 38.5m

Cycle 226 229 8 71 —1 1

Cycle 227 229 4 94 — 1

Cycle 226 230 16 120 — 1

Geom-1D 226 ≈ 229 7.2 65 —1 45084

Geom-1D 227 ≈ 229 3.8 90 — 5.2m

Geom-1D 226 ≈ 230 13.2 103 — 17

Geom-2D 226 ≈ 229 7.9 70 —2 45060

Geom-2D 227 ≈ 229 4.0 91 — 5.2m

Geom-2D 226 ≈ 230 15.6 117 — 18

In-out star 226 229 8 79 —1 2.6m

In-out star 227 229 4 —3 — —

In-out star 226 230 16 134 — 44800

Out-star 226 229 8 —3 —1 —

Out-star 227 229 4 —3 — —

Out-star 226 230 16 —3 — —

Simple-web 226 229 8 86 —1 10.6m

Simple-web 227 229 4 —3 — —

Simple-web 226 230 16 133 — 3.2m

Table 7.3: Experimental results on synthetic and real web graphs with |V | > M .
Notes: (1) experiment terminated after 12h; (2) experiment terminated after 24h; (3)
no further compression after a small number of initial contraction rounds, but graph
still beyond memory size.

The effect of the available memory. As already mentioned, the ability of our

algorithm to process certain graphs is limited by the available amount of main mem-

ory. The input graph needs to have few enough SCCs to fit in memory, and the

SCCs have to be composed of short enough cycles so we can find them as part of

105

the memory-sized subgraphs we process. Our inability to process all but one of the

out-star graphs nor the sparsest of the in-out-star and simple web graphs reflects

these limitations.

The effect of the graph structure. Since we were not able to process these

graphs, we can of course only extrapolate from the properties of the graphs in these

classes that we were able to process. The smallest simple web graph had about 1.6m

SCCs, and the smallest out-star graph even had about 33m SCCs. Compared to at

most a few hundred SCCs in the smallest cycle, geometric 1D and 2D, and random

graphs, these graphs have significantly more SCCs. For the sparser inputs, we suspect

that the number of SCCs exploded, preventing us from processing these graphs.

The smallest in-out-star graph had about 22,000 SCCs, which is more than for

cycle, geometric 1D and 2D, and random graphs, but significantly less than for out-

star and simple web graphs. Therefore, we suspect that our inability to process the

sparsest of the in-out-star graphs was not a result of an excessive number of SCCs

but rather of SCCs with very long cycles, which we were not able to find using the

amount of main memory available on our test machine.

In general, it was apparent that EmSCC is much more immune to variations

in the graph structure than SeSCC, as the running time of EmSCC almost only

depended on the input size. This behavior can be seen more clearly in Figure 7.5

where, with m = 229 and varying n, all of the synthetic graphs show a very similar

performance pattern (except for simple web and in-out-star graphs with n = 227, for

which the algorithm was not able to compress the graph down to memory size). On

the other hand, SeSCC showed large variations in running times on graphs of the

same size but different structure. This is surprising because algorithmically EmSCC

explicitly depends on the graph structure (i.e., strongly connected subgraphs having

short cycles), while, SeSCC has no such explicit dependence on the graph structure.

The effect of the number of rounds. Another interesting observation we made

in our experiments was the lack of a smooth transition between graphs we could

process very efficiently and graphs we could not process at all. More precisely, all the

graphs we were able to process required one or two contraction rounds, followed by

a final round computing the SCCs in internal memory. We believe that much bigger

106

 50

 60

 70

 80

 90

 100

 110

225 226 227

T
im

e
(s

ec
s)

Number of Vertices

Random
Cycle

Geometric 1D
Geometric 2D

In-out-star
Out-star

Simple web

Figure 7.5: Variation of EmSCC total time with increasing n and m = 229.

graphs of the same structure as the graphs we tested can be processed, using more

rounds, but this is hard to evaluate conclusively, as each such graph would take days

to process even using EmSCC, and the generation of such massive graphs also poses

major challenges.

The effectiveness of pipelining contraction steps. Let us consider the smallest

web graph; in this case EmSCC only needed one round of contractions. With each

contraction step we obtained a substantial reduction in the size of the subgraph loaded

into memory, and it was not necessary to write the contracted edges back to disk;

these edges were few enough so that we were able to incorporate them into the group

of edges to be used in the next contraction. This result confirms the success of the

pipelining idea. In the case of the second and third graphs, which are the ones with

the most SCCs, we were able to achieve over a 90% reduction in the graph size just

after the first round of contractions; we needed only one additional round where we

loaded the contracted graph into memory and computed the final SCCs.

Overall, the experimental results demonstrated that, while EmSCC is not guar-

anteed to be theoretically efficient, in practice it is very fast on the graphs it was

able to process, and it extends the size of the problems that can be tackled. The

algorithm outperforms the semi-external algorithm of [121] as it was able to process

a wide range of input graphs (which are the ones used already in [121]) faster, in-

cluding some real-world webgraphs. Moreover, EmSCC was able to process graphs

107

whose vertex set did not fit in memory.

In spite of being able to efficiently process larger graphs than SeSCC can handle,

the ability of EmSCC to process certain graphs is limited by the available amount of

main memory. Some graphs have just too many SCCs, which means that no amount

of contraction will make them fit in memory. Other graphs have SCCs with only

long cycles, and finding these cycles requires us to load them into memory, which

again may not be feasible. Nevertheless, we can expect to be able to process most

interesting synthetic and real graphs, as has been the case of most of the graphs

presented in this section.

Chapter 8

External-Memory Topological Sorting

In this chapter we present an I/O-efficient algorithm, IterTS, for the problem of

topological sorting of directed acyclic graphs (DAGs). This is a problem for which no

provably I/O-efficient solution is known for general DAGs, while optimal algorithms

for planar graphs [27], graphs of bounded treewidth [97] and near-planar graphs [78]

exist. The strategy of IterTS can be summarized as follows. An initial numbering

of the vertices in the DAG is computed; even a random numbering is expected to

satisfy at least half the edges in the DAG, where we call an edge satisfied if its tail

has a smaller number than its head. IterTS then applies an iterative procedure

which corrects the initial numbering to satisfy more and more edges until all edges

are satisfied.

To evaluate IterTS, we compared its running time to that of three competitors:

PeelTS, an I/O-efficient implementation of the standard strategy of iteratively re-

moving sources and sinks; ReachTS, an I/O-efficient implementation of a recently

proposed parallel divide-and-conquer algorithm based on reachability queries; and

SeTS, standard DFS-based topological sorting built on top of a semi-external DFS

algorithm. In our evaluation on various types of input graphs, IterTS consistently

outperformed PeelTS and ReachTS, by at least an order of magnitude in most

cases. SeTS outperformed IterTS on most graphs whose vertex set fits in memory.

However, IterTS often came close to the running time of SeTS on these inputs, and

SeTS was not able to process graphs whose vertex set was beyond the main memory

size, while IterTS was able to process such inputs efficiently.

8.1 Introduction

Topological sorting is solved in internal memory in linear time by either of two meth-

ods: repeatedly removing sources (in-degree-0 vertices) [84,85] or using DFS [53,125].

Unfortunately, both algorithms access the vertices in an unstructured fashion and,

108

109

thus, usually perform one random disk access per vertex when processing inputs be-

yond the size of main memory.

The rest of the chapter is organized as follows. In Section 8.2, we describe our

new algorithm. In Section 8.3 we describe other algorithms we considered reasonable

competitors and implemented, in order to compare their performance with that of

our algorithm. In Section 8.4 we present some implementation details. In Section 8.5

we discuss our experimental setup and results.

8.2 Topological Sorting by Iterative Improvement

In this section we describe our algorithm for solving the topological sorting problem,

referred to as IterTS throughout the rest of the chapter. Given a numbering ν(·) of
the vertices of the input DAG G, we call an edge satisfied if its tail receives a lower

number than its head; otherwise, we say the edge is violated. The satisfied subgraph

of G is a DAG Gν whose vertex set is V and whose edge set consists of all edges of

G satisfied by ν(·).

The general strategy of the algorithm can be described as follows. Given a DAG

G = (V,E), the first step of our algorithm is to compute a numbering ν0(·) of the ver-
tices in V . After computing the initial numbering ν0(·) and its corresponding satisfied

subgraph Gν0, we proceed in iterations, each of which computes a new numbering νi(·)
from the previous numbering νi−1(·), with the goal of increasing the number of sat-

isfied edges. The computation of νi(·) from νi−1(·) ensures that νi(·) satisfies strictly
more edges than νi−1(·). Thus, the algorithm is guaranteed to terminate, slowly in

the worst case, quickly in practice.

The description of the algorithm is divided into four parts. In Section 8.2.1, we

describe how to compute the initial numbering ν0(·). In Section 8.2.2, we discuss the

computation in each iteration. In Section 8.2.3, we analyze the I/O complexity of the

algorithm. Finally, in Section 8.2.4, we discuss a heuristic improvement that led to a

tremendous performance improvement of our algorithm.

110

8.2.1 Computing the Initial Numbering

Throughout the algorithm, we assume the input graph G has only one source s. If

this is not the case, we introduce a new source vertex and connect it to each of the

original sources. Then we compute an out-tree of s, that is, a spanning tree of G

whose root is s and all of whose edges are pointing away from s. Since G is acyclic,

such a spanning tree T0 can be obtained by having every vertex x
= s choose an

arbitrary in-edge to be included in T0. The set of all selected edges forms a spanning

tree of G.

In the tree thus constructed, we now choose an arbitrary left-to-right ordering of

the out-edges of every vertex in T0. Then we proceed to compute two numberings νl(·)
and νr(·) of its vertices. Both are preorder numberings; νl(·) numbers the subtrees

of each vertex in left-to-right order, while νr(·) numbers the subtrees in right-to-left

order. Both numberings satisfy all tree edges and one of them satisfies at least half of

the non-tree edges. We choose our initial numbering ν0(·) to be the one that satisfies

more edges. Next we describe how to carry out this procedure using O(sort(m)) I/Os.

Constructing T0. After sorting the edges of G by their heads, a scan of this edge

list suffices to choose one in-edge for each vertex and, if there is more than one vertex

without in-edges, add a new source s and connect it to each original source. Thus,

T0 can be constructed using O(sort(m)) I/Os.

Computing νl(·) and νr(·). The numberings νl(·) and νr(·) are easily computed

by first constructing an Euler tour around T0 and then ranking the nodes in the tour

using an I/O-efficient list ranking algorithm, all of which takes O(sort(n)) I/Os.

Computing ν0(·). It suffices to sort and scan the vertex and edge sets of G to

label every edge with the numbers assigned to its endpoints by νl(·) and νr(·), and
count the number of edges satisfied by each numbering, in order to choose ν0(·). This
takes O(sort(m)) I/Os.

111

8.2.2 Growing the Satisfied Subgraph

Each iteration of the algorithm now computes a new numbering νi(·) from the current

numbering νi−1(·) so that νi(·) satisfies strictly more edges than νi−1(·). We do this

in two phases.

In the first phase, we compute an out-tree Ti of s and compute a numbering ν ′i(·)
such that ν ′i(x) ≥ νi−1(x), for all x ∈ V , and every edge in Ti is satisfied. During the

construction of the tree Ti, every vertex x
= s chooses an in-edge (y, x) for inclusion

in Ti so that νi−1(y) is maximized. Figure 8.1 shows an illustration of this rule.

1

2

3

4

(a) (yi, x) with νi−1(yi) = 3
is added to Ti.

6

1

5

4

(b) (yi, x) with νi−1(yi) = 6
is added to Ti.

Figure 8.1: Selection of in-edge for vertex x with νi−1(x) = 4. Each vertex displays
its corresponding value of νi−1(·). Dashed lines denote violated edges. The left side
shows a case where x has only satisfied in-edges, whereas on the right side it has
violated in-edges.

In the second phase, we compute a numbering ν ′′i (·) by processing the subgraph

Gνi−1
of G satisfied by νi−1(·). This numbering satisfies ν ′′i (x) ≥ ν ′i(x), for all x ∈ V ,

and satisfies all edges of Gνi−1
. We obtain the new numbering νi(·) by ordering the

vertices in G according to ν ′′i (·) and then numbering the vertices of G in order.1 Next

we describe the computation of ν ′i(·), ν ′′i (·), and νi(·) in detail.

Computing ν′
i(·). To construct the tree Ti, we proceed similarly to the construc-

tion of T0, choosing one in-edge (y, x) per vertex x
= s to be included in Ti. This

time, however, we choose each such edge (y, x) so that νi−1(y) is maximized. Similar

to the construction of T0, this construction can be carried out by sorting the edges

1The orderings defined by νi(·) and ν′′i (·) are identical, but ν′′i (·) may not assign unique numbers
to vertices and may assign numbers greater than N .

112

of G by their heads and then scanning the edge list to choose the in-edge of each

vertex to be included in Ti. (Recall that each edge (y, x) is labelled with the numbers

νi−1(x) and νi−1(y) of its endpoints, making it easy to identify the in-edge (y, x) of

each vertex x that maximizes νi−1(y).) Next we construct an Euler tour of Ti and

apply list ranking to compute a preorder numbering of Ti, which is also a topological

ordering of Ti. We sort the vertices of Ti in this order and then apply time-forward

processing to compute, for every vertex x ∈ Ti, ν
′
i(x) := max(νi−1(x), ν

′
i(pi(x)) + 1),

where pi(x) denotes x’s parent in Ti. The sorting and scanning of the vertex and

edge sets of G, and the application of the Euler tour technique, list ranking, and

time-forward processing to Ti take O(sort(m)) I/Os in total.

Computing ν′′
i (·). In the second step, we sort the vertices according to νi−1(·)

and the edges of Gνi−1
by their tails. Then we apply time-forward processing to

Gνi−1
, which is possible because νi−1(·) defines a topological ordering of Gνi−1

(by

definition, νi−1(·) satisfies all edges in Gνi−1
). For every vertex, we compute ν ′′i (x) :=

max({ν ′i(x)} ∪ {ν ′′i (y) + 1 | (y, x) ∈ Gνi−1
}), which ensures that ν ′′i (·) satisfies every

edge of Gνi−1
. This takes O(sort(m)) I/Os.

Computing νi(·). To prepare for the next iteration, we compute νi(·) by ordering

the vertices inG by ν ′′i (·) and then numbering them in order. Using a constant number

of sorting and scanning passes, we label every edge with the numbers of its endpoints

and accordingly classify the edge as satisfied or violated. This takes O(sort(m)) I/Os.

8.2.3 Analysis

From the above discussion, it follows that the initialization and each iteration of the

algorithm take O(sort(m)) I/Os. Thus, the I/O complexity of the whole algorithm

depends on the number of iterations the algorithm executes. The following lemma

bounds this number of iterations.

Lemma 8.1. IterTS takes at most l − 1 iterations to satisfy all edges in G, where

l is the length of the longest path in G.

Proof. For a vertex x, let l-dist(x) be the length of the longest path from s to x in G.

We prove by induction on i that all in-edges of vertices x with l-dist(x) ≤ i + 1 are

113

satisfied by νi(·). Thus, νl−1(·) satisfies all edges of G if l denotes the length of the

longest path in G.

The base case, i = 0 is trivial because ν0(s) = 1, while ν0(x) > 1, for all x
= s.

Hence, all out-edges of s are satisfied by ν0(·), which is a superset of the in-edges of

all vertices x with l-dist(x) ≤ 1.

So assume the claim holds for i < k. We need to prove it for i = k. It suffices

to prove that ν ′′k (·) satisfies all in-edges of vertices x with l-dist(x) ≤ k + 1 because

νk(·) is obtained by ordering the vertices by ν ′′k (·) and then numbering them in order.

Thus, if ν ′′k (x) < ν ′′k (y), we also have νk(x) < νk(y).

First we prove that ν ′′k (x) = ν ′k(x) = νk−1(x), for all x with l-dist(x) ≤ k. Since

every in-neighbour y of such a vertex x satisfies l-dist(y) ≤ k and νk−1(x) satisfies

every in-edge of x, this implies that ν ′′k (y) = νk−1(y) < νk−1(x) = ν ′′k (x), that is, ν
′′
k(·)

satisfies all in-edges of x. We prove this claim by induction on l-dist(x).

For l-dist(x) = 0, we have x = s and ν ′′k (s) = ν ′k(s) = νk−1(s) = 1 because

s is the source of Gνk−1
and the root of Tk−1. For 0 < l-dist(x) ≤ k, we have

ν ′k(x) = max(νk−1(x), ν
′
k(pk(x)) + 1). However, we have l-dist(pk(x)) < l-dist(x)

and, hence, ν ′k(pk(x)) = νk−1(pk(x)). Furthermore, νk−1(pk(x)) < νk−1(x) because

pk(x) is an in-neighbour of x and νk−1(·) satisfies all in-edges of x. This implies that

ν ′k(x) = νk−1(x). Similarly, we have ν ′′k (x) = max({ν ′k(x)}∪{ν ′′k (y)+1 | yx ∈ Gνk−1
}).

Every in-neighbour y of x in Gνk−1
satisfies l-dist(y) < l-dist(x). Hence, by the

induction hypothesis and because νk−1(·) satisfies the edge yx, ν ′′k (y) = ν ′k(y) =

νk−1(y) < νk−1(x) = ν ′k(x), and ν
′′
k (x) = ν ′k(x) = νk−1(x).

Now consider a vertex x with l-dist(x) = k + 1, and let y be an arbitrary in-

neighbour of x. The parent pk(x) of x in Tk is chosen so that νk−1(pk(x)) ≥ νk−1(y).

Hence, ν ′k(x) ≥ ν ′k(pk(x)) + 1 = νk−1(pk(x)) + 1 ≥ νk−1(y) + 1. We also have ν ′′k (x) ≥
ν ′k(x), that is, ν

′′
k (x) > νk−1(y). On the other hand, since y is an in-neighbour of x, we

have l-dist(y) ≤ k and, hence, ν ′′k (y) = νk−1(y). Thus, the edge yx is satisfied by ν ′′k (·).
Since this argument applies to all in-edges of vertices x with l-dist(x) = k + 1, and

we have already shown that ν ′′k (·) satisfies all in-edges of vertices x with l-dist(x) ≤ k,

this proves that ν ′′k (·) satisfies all in-edges of vertices x with l-dist(x) ≤ k + 1. This

finishes the proof.

By Lemma 8.1, IterTS is guaranteed to terminate, after at most n−2 iterations.

114

v3 v5v6v7v1v2 v4

M

(a) Subgraph before processing.

v3 v5 v6 v7v1 v2 v4

M

(b) Subgraph after processing.

Figure 8.2: Local topological ordering of memory-sized subgraphs. In (a), vertices
are arranged by ν ′′i (·). Solid edges are satisfied edges in the subgraph, dashed edges
are violated edges in the subgraph, and dotted edges have only one endpoint in the
subgraph, that is, are not local. In (b), the vertices are rearranged to ensure that all
edges local to the subgraph are satisfied.

For many graphs, the longest path has length significantly less than n − 2, guaran-

teeing a faster termination of the algorithm. Even for graphs with long paths, our

experiments show that, in practice, IterTS terminates much faster than predicted

by Lemma 8.1.

8.2.4 Satisfying Local Edges

By our analysis in the previous subsection, the cost of our algorithm depends crucially

on the number of iterations it needs to satisfy all edges in the DAG. Furthermore, each

iteration is costly since it involves computing a number of primitives, including Euler

tour, list ranking and time-forward processing. In this section, we discuss a heuristic

that helped us reduce the number of iterations in our algorithm significantly.

The idea is to immediately satisfy violated edges whose endpoints are “not too

far apart” in the current ordering. To this end, we add the following step between

computing ν ′′i (·) and numbering the vertices of G in order to compute νi(·). We sort

the vertices by ν ′′i (·) and the edges of G by the maximum positions of their endpoints

in this sorted list. Then we scan the vertex and edge lists to greedily partition the

vertex list into maximal contiguous sublists such that the vertices in each sublist

induce a subgraph with at most M vertices and edges. We load each such subgraph

into memory, topologically sort it, and then rearrange the vertices in the subgraph

according to this topological ordering. We do not change the relative order of vertices

in different subgraphs. This strategy ensures that all edges within each memory-sized

subgraph are satisfied, while satisfied edges between subgraphs remain satisfied. This

115

is illustrated in Figure 8.2. Once we have rearranged the vertices in each memory-

sized subgraph in this fashion, we compute νi(·) by numbering the vertices of G in

order as before. Using this heuristic, the edges satisfied by νi(·) are a superset of the

edges satisfied by ν ′′i (·). Algorithm 6 presents the pseudocode of IterTS and shows

where this heuristic fits in IterTS’s procedure (Steps 9–12).

Algorithm 6: IterTS(G)

Input: G = (V,E).
Output: A topological ordering of G.

1 Let i = 0 and Gi = G;

// Computing the initial numbering:

2 Construct an out-tree T0 of G and compute numberings νl(·) and νr(·) of T0;
3 Let ν0(·) be the numbering that satisfies more edges of G;
4 Compute Gν0 ⊆ G using ν0(·);
// Growing the satisfied subgraph iteratively:

5 while Gνi
= G do

// Phase 1:

6 Construct an out-tree Ti of G and compute a preorder numbering of Ti;
7 Process Ti in preorder and compute ν ′i(·);

// Phase 2:

8 Process Gνi−1
in order of νi−1(·) and compute ν ′′i (·);

// Satisfying local edges:

9 Arrange V and E according to ν ′′i (·) appropriately;
10 Partition V into sublists that induce subgraphs of size O(M);
11 Compute a topological ordering of each subgraph in memory;
12 Rearrange the vertices in each subgraph according to this ordering;

// Preparing for next iteration:

13 Compute νi(·) by numbering the vertices in order;
14 Compute Gνi ⊆ G using νi(·);
15 return The numbering ν(·) representing the topological ordering of G;

The additional cost of this heuristic improvement is O(sort(m)) I/Os per iteration.

Indeed, in order to identify the memory-sized subgraphs, we need to label every edge

with the positions of its endpoints in the vertex list sorted by ν ′′i (·) and then sort the

edges by their endpoints with higher position in the list. This takes O(sort(m)) I/Os.

116

Given the sorted vertex and edge list, we scan the list and construct the memory-

sized subgraphs greedily, starting with the first vertex in the list. When considering a

vertex x for inclusion in the current subgraph H , we scan the list of edges that have x

as their higher endpoint. Such an edge has both endpoints inH if and only if the lower

endpoint of the edge succeeds the first vertex in H in the sorted vertex list. Thus, we

can count the number of edges the addition of x would add to H . If the total number

of edges in H is still less than M , we include x in H and proceed to considering

the next vertex. Otherwise, we make x the first vertex of the next subgraph. This

is similar to the construction of memory-sized subgraphs in our strong connectivity

algorithm discussed in Chapter 7.

8.3 Other Approaches to Topological Sorting

There are other approaches to topological sorting that are worth considering, as they

are either well known or were proposed with I/O efficiency or parallelism in mind and,

thus, may achieve better performance than IterTS, at least on certain inputs. In our

experiments, we compared the performance of these algorithms to the performance

of IterTS.

8.3.1 Topological Sorting Using Semi-External DFS

A classical method for topological sorting is to perform DFS on the DAG and number

the vertices in reverse postorder [53]. Building this strategy on top of the semi-

external DFS heuristic of [121], one obtains an algorithm for topological sorting that

should be very efficient as long as the vertex set of the graph fits in memory. We refer

to this algorithm as SeTS.

8.3.2 Iterative Peeling of Sources and Sinks

Another classical method for topological sorting works by iteratively removing sources

(in-degree-0 vertices) and sinks (out-degree-0 vertices). In each iteration, the algo-

rithm identifies all sources and sinks of the current DAG and numbers them, sources

up from 1, sinks down from N . Then these vertices are removed, which makes some of

their neighbours sources or sinks to be removed in the next iteration. This procedure

117

is repeated until no vertices remain.

A naive implementation of this strategy incurs one random access per edge to

test, for each neighbour of a removed vertex, whether it becomes a source or sink

as a result of this removal. In contrast, in our experiments, we used the following

more I/O-efficient implementation which should be fast for random DAGs and should

perform reasonably well even for some other graph classes. We refer to this approach

as PeelTS. It consists of two phases: a preprocessing phase and a peeling phase. The

peeling phase iteratively removes the sources and sinks of the DAG I/O-efficiently.

The preprocessing phase arranges the vertices (and their adjacency lists) of the DAG

so that the locality of data accesses during the peeling phase increases; PeelTS uses

an Euler tour of a spanning tree T of the input DAG to order the vertices and their

adjacency lists by their depth in T .

Preprocessing. We assume the initial DAG G has only one source, which is easily

achieved by adding a new source and connecting it to the original sources. Then

we compute an out-tree T of the source as in Section 8.2. We label the vertices

in G with their in- and out-degrees and with their depths in T . This information

can be computed using the Euler tour technique and list ranking. Now we sort the

vertices and their adjacency lists by their depths in T . Let L be the resulting list.

By laying out the graph this way, we expect accesses to the vertex list, during the

peeling phase, to occur in a relatively local portion. This intuition is confirmed, for

some graph classes, in the experimental evaluation.

Peeling. This phase proceeds in a series of iterations. Each iteration starts with the

current set of sources and sinks, which we call S+ and S− respectively. The task of

each iteration is to (a) number the vertices in S+ and S−, and (b) identify the new set

of sources and sinks passed into the next iteration. To this end, we sort the out-edges

of the sources in S+ by their heads and the in-edges of the sinks in S− by their tails.

Now we scan L from the beginning until we have seen all out-neighbours of S+ and

from the end until we have seen all in-neighbours of S−. For each out-neighbour of a

vertex in S+, we decrease its in-degree by one and, if its in-degree is now 0, retrieve

it and its adjacency list to be used as part of S+ in the next iteration. We process

in-neighbours of S− analogously.

118

In order to avoid the vertex and edge lists from becoming too sparse as a result of

the removal of vertices and edges, which would contribute unnecessarily to the cost

of scanning L, we compact these lists periodically. For some load factor 0 < α < 1,

we call a sublist of L α-sparse if less than an α-fraction of the elements in the sublist

are unprocessed. In each iteration, we find the longest α-sparse prefix and suffix of

the prefix and suffix of L scanned in this iteration, and we compact these two sublists

by storing the unprocessed elements in them consecutively. In our implementation,

we chose α = 5%, which we determined experimentally gave the best performance.

8.3.3 Divide and Conquer Based on Reachability Queries

In [116], a parallel divide-and-conquer algorithm for topological sorting based on

reachability queries is described. We implemented an external-memory version of

this algorithm (referred to as ReachTS throughout this chapter).

The algorithm starts by checking if the DAG fits in memory. If it does, it is

topologically sorted using an efficient internal-memory algorithm. Otherwise, the

following partitioning strategy is applied. First the algorithm arranges the vertices

in a random order x1, x2, . . . , xn. Then it uses binary search to find the lowest index

k such that vertices x1, x2, . . . , xk−1 can reach less than n/2 vertices and vertices

x1, x2, . . . , xk can reach at least n/2 vertices. Then it computes two sets A and B,

where A contains all vertices reachable from x1, x2, ..., xk−1, and B is the set of vertices

reachable from xk.

Now the following five sets are defined: S1 = V \ (A∪B), S2 = A \B, S3 = {xk},
S4 = B \ A, and S5 = A ∩ B. The algorithm recurses on each of the sets in turn

and then concatenates the sorted sequences of vertices in S1, S2, . . . , S5 to obtain a

topological ordering of G. The correctness of this strategy is shown in [116]. It is

also shown that the expected size of each set is n/2, making this algorithm terminate

after expected logn levels of recursion.

To find the set of vertices reachable from a set S during the binary search to

identify the index k, we use an implementation of directed breadth-first search. This

procedure starts by initializing two sets X := S and Y := S. The set X is the current

BFS level. The set Y ⊇ X is the set of vertices already seen by the BFS. Then it

computes a set Z as the set of out-neighbours of vertices in X that are not already

119

in Y . Afterwards, it sets Y := Y ∪X and X := Z. The algorithm iterates this until

X = ∅. The final set Y is the set of vertices reachable from S. Each iteration of this

directed BFS procedure can be implemented using O(sort(m)) I/Os. The set Z can

be computed by scanning X and the set of edges of G to find all out-edges of vertices

in X. Then we sort the set of heads of these edges and scan the sorted list and Y to

remove all duplicates and vertices that belong to Y from the sorted list. The result

is Z. Since each BFS iteration takes O(sort(m)) I/Os, ReachTS should be efficient

if the “diameter” of the graph is low.

8.4 Implementation Details

This section outlines the most important implementation choices made in the different

parts of the algorithms presented in Sections 8.2 and 8.3. We implemented IterTS,

PeelTS and ReachTS in C++ and using the STXXL library [60], which is an

implementation of the C++ STL for external memory computations. For SeTS, we

used an implementation provided by Andreas Beckmann [34].

External-memory graph representation. We used STXXL vectors to store the

vertex set V and edge set E of the input graphs since they guarantee that the scanning

of vertices and edges can be done in O(scan(n)) I/Os and O(scan(m)) I/Os respec-

tively. Every vertex x ∈ V is represented by its ID and has a label associated with it

denoting its current number ν(x). Every edge (x, y) is represented by the IDs of its

two endpoints and by their current numbers ν(x) and ν(y). All sorting steps on V

and E in our implementation were accomplished using the STXXL sorting algorithm.

Time-forward processing. Time-forward processing (see Section 6.2.2.2) pro-

cesses the vertices in topologically sorted order and uses a priority queue to simulate

the sending of information along the edges of the DAG. For its implementation we

used the priority queue provided by STXXL.

Euler tour. We used the standard construction of an Euler tour of a tree (see

Section 6.2.2.2), which generates a list of edges incident to each vertex by duplicating

each edge and then sorting the edge list. Then a scan of this sorted list suffices to

120

generate the Euler tour. The edges are stored in an STXXL vector and the STXXL

sorting algorithm is used.

List ranking. For list ranking, we used an algorithm of [122]. Ajwani et al. [18] pro-

vided an STXXL-based implementation of this algorithm as part of their undirected

BFS implementation, and we re-used this code.

Internal-memory graph representation. For processing a graph in internal

memory, we used the compact representation described in Section 7.3, which maxi-

mizes the size of the subgraphs that can be processed in memory.

8.5 Performance Evaluation

This section presents an experimental study of the behavior of the algorithms pro-

posed in this chapter, using different graph classes. We start with a discussion of our

test environment, followed by a description of the data sets used in our tests, and

finally an evaluation of the algorithms on these data sets.

8.5.1 Environment and Settings

All experiments were run on a PC with a 3.33GHz Intel Core i5 processor, 4GB of

RAM, and one 500GB 7200RPM IDE disk using the XFS file system. The operating

system was Ubuntu 9.10 Linux with a 2.6.31 Linux kernel. The code was compiled

using g++ 4.4.1 and optimization level –O3. For our experiments we limited the

available RAM to 1GB (using the mem= kernel option). All of our timing results refer

to wall clock times in hours.

8.5.2 Data Sets

We tested the algorithms on synthetic graphs chosen with certain characteristics that

should be hard or easy for different algorithms among the ones we implemented. We

also ran the algorithms on real web graphs with their edges redirected to ensure that

the graphs are acyclic. The number of vertices in the graphs were between 225 and 228,

the number of edges between 227 and 230. Next we give a description of the graphs

used in our experiments.

121

Random: These graphs were generated according to the Gn,m model; that is, m

edges were generated, choosing each edge endpoint uniformly at random from

a set of n vertices. The edges were directed from lower to higher endpoints.

Width-one: To generate these graphs, we started with a long path of n− 1 edges.

Then m−n+1 random edges with appropriate directions were added according

to the Gn,m model as for random graphs.

Layered: These graphs consist of
√
n layers of

√
n vertices, with random edges be-

tween adjacent layers. To generate these graphs, we first chose, for each vertex

in a given layer, a random in-neighbour in the previous layer and a random

out-neighbour in the next layer. Then we added more random edges between

adjacent layers to increase the edge count to m.

Semi-layered: Layered graphs consist of many moderately long paths but are too

structured, which makes them extremely easy inputs for PeelTS. Semi-layered

graphs aim to have moderately long paths but with less structure. To construct

these graphs, we first constructed q := n1/3 layered DAGs G1, G2, . . . , Gq con-

sisting of n1/3 layers of size n1/3 each. Then we added random edges between

the DAGs by generating random quadruples (i, j, h, k) with i < j and h > k

and, for each such quadruple, adding a random edge from layer h of Gi to layer

k of Gj.

Low-width: These graphs were constructed in the same way as layered graphs. How-

ever, the number of layers was set to 1, 000, 000 in this case and the size of a

layer was set to n/1, 000, 000. Moreover, in the first phase of the construction

of the graph, which chooses one in- and one out-neighbour per vertex, we con-

nected the ith node in the jth layer to the ith node in layer j + 1, thereby

starting with n/1, 000, 000 disjoint paths of length 1, 000, 000. Then we added

random edges between layers as for layered graphs.

Grid: These graphs were formed by taking a
√
n x

√
n grid and directing all hori-

zontal edges to the right and all vertical edges down.

122

Webgraphs: The web graphs were produced by real web crawls of the .uk do-

main, the .it domain, and from data produced by a more global crawl us-

ing the Stanford WebBase crawler. These web graphs were obtained from

http://webgraph.dsi.unimi.it/. Since they were not necessarily acyclic, we

redirected the edges from lower vertex IDs to higher vertex IDs.

8.5.3 Experimental Results

The main goals of our experiments were the following: Compare the algorithms,

study how they are affected by the structure of the input graph, and, using the

result, recommend which algorithm to use if there is a priory knowledge of the graph

structure. Table 8.1 shows the running times of the algorithms on different input

graphs. In order to bound the time spent on our experiments, we used the following

rules.

1. Each algorithm was given an amount of time at least 10 times the time used

by IterTS to process the same input. If it did not produce a result in the

allocated time, we terminated it. This is indicated by a dash (—) in the table,

with superscripts indicating the amount of time given to the algorithm.

2. If IterTS took more than one day to process an input and was consistently

faster than another algorithm on smaller inputs, we did not run the other algo-

rithm on this input. This is indicated by stars (***) in the table.

3. Since SeTS is a semi-external algorithm and 226 vertices do not fit in 1GB of

memory, we did not run it on larger inputs if it did not finish in the allocated

time on the smallest input with 226 vertices (which was the case for all input

types).

8.5.3.1 Comparison of Running Times

The initial intuition was that IterTS would perform reasonably well on any of the

input graphs, whereas PeelTS and ReachTS would be feasible only on a few of

them. In practice, for almost all the inputs, IterTS outperforms both PeelTS and

ReachTS. In addition, PeelTS and ReachTS were not able to finish many of the

123

Table 8.1: Experimental results. Dashes indicate inputs that could not be pro-
cessed by the algorithm in the allocated time. Superscripts indicate the number of
days after which each run was terminated. A superscript of 0 means the run was
terminated after 15h. Stars indicate an experiment not performed. Time values
are given in hours.

Graph Class n m m/n IterTS PeelTS ReachTS SeTS

iters. time time time time

Random 225 227 4 2 0.94 2.71 2.20 0.50

Random 225 228 8 5 3.50 8.58 2.39 1.56

Random 226 228 4 4 3.47 5.48 4.23 —2

Random 226 229 8 5 7.48 17.76 10.78 ***

Random 227 229 4 5 9.22 14.02 9.80 ***

Random 228 230 4 7 27.13 *** *** ***

Width-one 225 227 4 4 1.78 —1 —0 0.05

Width-one 225 228 8 6 4.25 —2 —2 0.08

Width-one 226 228 4 8 7.42 —3 —3 —3

Width-one 226 229 8 9 13.46 —6 —6 ***

Width-one 227 229 4 14 24.90 *** *** ***

Width-one 228 230 4 19 68.38 *** *** ***

Layered 225 227 4 2 0.92 2.70 —0 0.48

Layered 225 228 8 1 0.76 4.62 —1 1.17

Layered 226 228 4 1 1.02 6.33 —1 —1

Layered 226 229 8 1 1.49 10.76 —1 ***

Layered 227 229 4 3 5.01 25.55 —2 ***

Layered 228 230 4 2 7.14 57.87 —3 ***

Semi-layered 225 227 4 3 1.33 —1 2.58 0.34

Semi-layered 225 228 8 5 3.26 —2 8.02 0.75

Semi-layered 226 228 4 5 4.47 —2 15.77 —2

Semi-layered 226 229 8 7 10.08 —4 20.83 ***

Semi-layered 227 229 4 8 14.09 —5 66.97 ***

Semi-layered 228 230 4 9 31.75 *** *** ***

... continue on next page

124

Table 8.1: (continued)

Graph Class n m m/n IterTS PeelTS ReachTS SeTS

iters. time time time time

Low-width 225 227 4 1 0.47 —1 —1 0.35

Low-width 225 228 8 1 0.72 —1 —1 0.93

Low-width 226 228 4 1 1.01 —1 —1 —1

Low-width 226 229 8 1 1.48 —1 —1 ***

Low-width 227 229 4 1 2.03 —1 —1 ***

Low-width 228 230 4 1 4.09 —2 —2 ***

Grid 225 ≈ 226 2 1 0.31 4.14 —1 0.50

Grid 226 ≈ 227 2 1 0.67 8.46 —1 —1

Grid 227 ≈ 228 2 1 1.38 18.67 —1 ***

Grid 228 ≈ 229 2 1 2.84 44.54 —2 ***

Webgraph 18.5m 298.1m 16.1 3 1.88 —1 7.75 1.30

Webgraph 41.3m 1,150.7m 25.9 4 9.06 —4 —4 3.49

Webgraph 118.1m 1,019.9m 8.6 4 10.13 —4 —4 —4

experiments in the allotted time, that is, IterTS outperformed them by at least one

order of magnitude. Next we discuss our findings in detail.

Using synthetic graphs. Let us first consider the case of random graphs which are

usually regarded the easiest. As expected, random graphs proved to be easy instances

for all algorithms, with usually a factor of less than two between the running times

of IterTS, PeelTS, and ReachTS. On most of the other input graphs, PeelTS

and ReachTS were not able to process any of the inputs in the allotted amount

of time, that is, IterTS outperformed them by at least one order of magnitude on

these inputs.

PeelTS was able to process all layered and grid graph instances we tried. For grid

graphs, the running time was still more than 10 times higher than that of IterTS.

Layered graphs are a particularly easy input for PeelTS because the preprocessing

125

stage of the algorithm arranges the vertices layer by layer, which is also the order

in which the peeling phase peels sources and sinks. Thus, each peeling round scans

exactly those vertices removed from the graph in this round. Nevertheless, the running

time of PeelTS here is still at least 3 times higher than that of IterTS.

We designed the semi-layered graphs to eliminate the “orderly” structure of lay-

ered graphs and, as expected, the performance of PeelTS broke down on these

graphs. ReachTS performed better on semi-layered graphs than on layered graphs,

at least on the graphs it was able to process in the allotted time. We suspect that

this was the result of somewhat shorter shortest paths in the semi-layered graphs,

which made the reachability queries in ReachTS cheaper. Finally, IterTS was the

only method able to handle width-one and low-width graphs.

Using web graphs. The results obtained with web graphs presented a surprise,

with ReachTS being able to process one of these graphs in 4 times the time taken

by IterTS, while not being able to process the bigger web graphs. PeelTS was not

able to process any of these graphs in the allotted time. Overall, this is surprising

because we expected these graphs to behave similarly to random graphs, particularly

given that the edge directions were essentially chosen randomly. Thus, these graphs

should not have posed any challenges for any of the algorithms.

Semi-external setting. On inputs whose vertex sets fit in memory (n = 225),

SeTS outperformed IterTS on most inputs, while IterTS was faster on some

inputs. Width-one graphs turned out to be particularly easy instances for SeTS. On

these inputs, it was nearly two orders of magnitude faster than IterTS. This concurs

with the discussion in [121], where it was stated that the semi-external DFS algorithm

performs very well for deep DFS trees. In experiments with larger graphs, where the

vertices did not fit in memory (see Table 7.1 for approximate vertex numbers SeTS

can process without using virtual memory), the performance of SeTS immediately

deteriorated and it was not able to process any of these inputs within the allotted

time, that is, IterTS outperformed SeTS by at least one order of magnitude.

In summary, we conclude that SeTS is the algorithm that should be used for

semi-external inputs, while IterTS is the clear choice on larger inputs. PeelTS

and ReachTS were not competitive with either SeTS or IterTS. The following

126

sections discuss possible reasons why these algorithms could or could not process

some inputs, shedding some light on their limitations.

8.5.3.2 The Effect of the Graph’s Structure

In general, IterTS’s performance is fairly consistent across all graph classes, with

width-one and semi-layered inputs being the ones that forced the algorithm to use

the most iterations. The other algorithms are much more sensitive to the graph’s

structure. In this section we discuss the effects that the different graph structures

have on the algorithms.

Effect on ITERTS. Recall that the running time of IterTS is determined mostly

by the number of iterations it needs to satisfy all edges in the graph. With the

exception of width-one graphs and the larger semi-layered graphs, the number of

iterations needed by IterTS was low, even though the graph structure had some

impact on the number of iterations needed. Thus, the performance of IterTS can

be considered fairly robust and almost independent of the graph’s structure. Width-

one graphs and the larger semi-layered graphs posed a greater challenge. Nevertheless,

while the upper bound on the number of iterations provided by Lemma 8.1 is between

225 and 228 for the input graphs we tested, IterTS needed less than 20 iterations

for all of these inputs and was able to process all our input instances in a reasonable

amount of time.

Effect on SETS. SeTS can be considered equally robust on semi-external in-

stances, even though it benefits from deep DFS trees, as already discussed. In

contrast, IterTS benefits from graphs having short paths, even according to the

pessimistic prediction of Lemma 8.1. Hence, IterTS is competitive with SeTS,

for instance, on semi-external random inputs, while SeTS is significantly faster on

width-one graphs.

Effect on PEELTS. By definition, PeelTS needs a large number of peeling rounds

for graphs with long paths. For example, for the smallest low-width graph, only

5% of the vertices had been removed after 92,000 peeling rounds, while PeelTS

needed between 73 and 148 rounds for random graphs. As such, width-one graphs

127

are intractable for PeelTS since it can only remove one source (and sink) at time.

On layered graphs, PeelTS also needed a large number (2898–8194) of rounds. The

reason for the good performance of PeelTS on these graphs is that the total cost of

the rounds is proportional to the total number of vertices, due to the particular order

in which the preprocessing phase arranges the vertices. The same should be true for

low-width graphs, which are layered graphs with many small layers. The reason why

PeelTS was not able to process them was the large number of peeling rounds, each

of which incurred some overhead leading to a cost of 1–5s per peeling round. This

overhead could have been eliminated for these graphs, given our knowledge of their

structure, but our goal was not to design customized algorithms for individual graph

classes.

Effect on REACHTS. ReachTS should perform well on graphs with low diam-

eter and poorly on graphs with long shortest paths, as the most costly part in the

algorithm is the BFS-based reachability queries. This intuition is confirmed by its

good performance on random graphs and its poor performance on layered, low-width,

and grid graphs. For example, the maximum number of BFS levels observed in any

reachability query on the random instances was 39, while the smallest low-width

graph led to reachability queries with over 1,400 BFS levels before the algorithm

was terminated. The performance on semi-layered and width-one graphs, however,

contradicts this intuition. Width-one graphs are random graphs, apart from the one

path visiting all vertices. So most shortest paths should be short, and the algorithm

should perform well, but it did not manage to process any of these instances. Con-

versely, semi-layered graphs should have fairly long shortest paths; yet, the algorithm

performed fairly well on these graphs.

8.5.3.3 Further Analysis of ITERTS

Effect of the input size. Figure 8.3(a) shows the running time of IterTS on

graphs of different types and sizes but with fixed density. As expected, the running

time increased linearly with the input size for layered and low-width graphs, as the

number of iterations is nearly independent of the size of the graph. For random, width-

one, and semi-layered graphs, the number of iterations required by the algorithm

128

 0

 10

 20

 30

 40

 50

 60

 70

227 228 229 230

T
im

e
(h

rs
)

Num. Edges (m)

Random
Width-one

Layered
Semi-layered

Low-width

(a) Running time

 0

 2e+12

 4e+12

 6e+12

 8e+12

 1e+13

 1.2e+13

 1.4e+13

 1.6e+13

 1.8e+13

 2e+13

227 228 229 230

I/O
 V

ol
um

e
(b

yt
es

)

Num. Edges (m)

Random
Width-one

Layered
Semi-layered

Low-width

(b) I/O volume

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12 14 16 18 20

S
at

is
fie

d
E

dg
es

 (
%

)

Rounds

Random
Width-one

Layered
Semi-layered

Low-width
Grid

Webgraph-uk
Webgraph-it

Webgraph-wb

(c) Satisfied edges (%)

Figure 8.3: (a) Increase of the running times of IterTS for graphs with fixed density
m/n = 4 and increasing m. (b) Increase of the I/O volume. (c) Increase of satisfied
edges per iteration for graphs with n = 228 and m = 230.

to terminate increased with the input size, leading to a super-linear dependence of

the algorithm on the input size. A nearly identical growth pattern can be seen in

Figure 8.3(b) with respect to increasing I/O volume.

Convergence rate. Another interesting factor to consider is how quickly the satis-

fied subgraph Gν converged to the whole DAG G. Figure 8.3(c) shows the percentage

of satisfied edges as a function of the iteration number for the largest input of each

type. As can be seen, with the exception of width-one graphs, the algorithm took

only few iterations to satisfy nearly all edges. Even for width-one graphs, 95% of the

edges were satisfied after only 6 iterations, and nearly 100% were satisfied after 10

iterations. This implies that, under reasonable assumptions about the ratio between

129

main memory and disk size, the edges that remained violated after 8–10 iterations

fit in memory. It would be helpful to switch to an alternate strategy at this point,

which takes advantage of this fact in order to avoid a large number of iterations to

satisfy the remaining edges.

One strategy we considered was to identify the set of vertices that cannot be

reached by any other vertex having violated in-edges. This way if this “satisfied”

vertex prefix is big enough, its removal might reduce the size of the subgraph we have

to work with in subsequent iterations. Identifying these vertices requires one time-

forward processing pass. Removing them requires sorting and scanning of the vertex

and edge sets of the graph. We tried to apply this strategy at different iterations in

the run of an experiment; for example, after every iteration, every 2 iterations, and in

the case of the two largest width-one graphs, after every 5 iterations. The added cost

of identifying the vertices to be removed outweighed the cost reduction resulting from

the reduced graph size, and we did not see any performance gain using this strategy.

Effect of satisfying local edges. Our final comment concerns the effect of the

local reordering heuristic described in Section 8.2.4 on the running time of the algo-

rithm. It became clear relatively early on that this heuristic speeds up the algorithm

tremendously. So we did not run IterTS without the heuristic, except on some of

the smaller inputs. For graphs with 225 vertices and 227 edges, we observed a re-

duction in the number of iterations from between 4 and 21 to between 1 and 3 as a

result of the heuristic. The only exceptions were grid graphs, which took one iteration

with or without the heuristic, and width-one graphs, which took 4 iterations with the

heuristic and which we terminated after 51 iterations without the heuristic.

Overall, the experiments demonstrated that IterTS and SeTS substantially out-

perform PeelTS and ReachTS and are less susceptible to variations in the graph’s

structure; though width-one and semi-layered graphs can be considered hard instances

for IterTS due to the larger number of iterations they require. While SeTS outper-

formed IterTS on most inputs whose vertex sets fit in memory, IterTS was able

to process larger inputs efficiently, while SeTS was not. As such, we conclude that

IterTS is the first algorithm for topologically sorting large DAGs that can efficiently

process graphs whose vertex set is beyond the main memory size, while SeTS should

130

be used on semi-external inputs.

Chapter 9

Conclusions

The primary focus of this thesis was on engineering algorithms that are able to pro-

cess massive data sets. The problems we studied were skyline computations on multi-

dimensional data, and computing strongly connected components and topological

sorting of directed graphs. The algorithms we proposed were carefully engineered us-

ing fundamental primitives and techniques. Their behavior was empirically evaluated

on a large set of benchmark data sets.

Skyline query computation. In Chapters 4 and 5 of this thesis, we proposed

skyline algorithms with the aim of querying massive databases. The two main results

are a parallel and an I/O-efficient sequential algorithm for computing skylines. Users

managing truly massive data warehouses of terabyte to petabyte scale can do so

only using large-scale parallel clusters. Our parallel algorithm allows these users to

take advantage of the power of these machines to answer skyline queries efficiently.

Our I/O-efficient algorithm demonstrates that the same techniques employed in the

parallel algorithm also lead to an I/O-efficient algorithm. This algorithm is useful

to users processing smaller data sets of a few hundred gigabytes on standard PC

hardware.

Algorithms for directed graphs. Chapters 7 and 8 of this thesis focused on solv-

ing problems on directed graphs I/O-efficiently. I/O-efficient algorithms for directed

graphs are a major frontier in the area of I/O-efficient algorithms. There are almost

no theoretical results in this area, nor has there been much previous work on engineer-

ing algorithms for directed graphs. The work we presented on strong connectivity and

on topological sorting is the first to address these problems from an engineering per-

spective. Our algorithms are the first that can efficiently process graphs whose vertex

sets do not fit in memory. Furthermore, our algorithms demonstrate that a number

of techniques, such as graph contraction, the Euler tour technique, list ranking, and

131

132

time-forward processing, which were the key to obtaining I/O-efficient algorithms on

undirected graphs, can also be used to obtain at least heuristic, practically efficient

solutions on directed graphs.

Directions for future work. A potential direction for future research in skyline

computation concerns improving the data distribution scheme in the parallel ap-

proach. Some follow-up work [132] already looked at better data distribution than

ours but they did not consider the cost of the distribution step. As we have seen,

for instance, in our strong connectivity and topological sorting algorithms is that, en-

suring this kind of improved data distribution—or improved clustering—often comes

with a computational overhead. The performance of the algorithm improves only if

the benefits of the improved data distribution outweigh the increased cost of comput-

ing the distribution.

For strong connectivity, a direction for future work is to overcome the limitations

on the types of graph classes the algorithm can process, possibly by combining our

strong connectivity and topological sorting algorithms. For topological sorting, an

important research direction is to reduce the I/O volume and, thus, the performance

of the algorithm. Both algorithms also seem to be (mostly) parallelizable. The

combination of I/O-efficiency and parallelism would allow the processing of even

larger inputs found, for example, in web modelling applications.

Finally, we hope that the insights we gained in developing our algorithms will also

help when engineering algorithms for other graph problems. The techniques used here

most likely will not lead to provably efficient solutions for other problems on directed

graphs, such as computing shortest paths. Nevertheless, here we demonstrated that

essentially the techniques for undirected connectivity problems do work reasonably

well in practice in the directed case, so it is possible that the techniques for solving

undirected graph exploration problems, such as diameter-based clustering, may also

work reasonably well in practice for directed graphs.

Bibliography

[1] Beowulf cluster. http://www.beowulf.org/. Accessed March 21, 2011.

[2] Broad institue. http://www.broadinstitute.org/. Accessed November 26,
2010.

[3] Facebook. http://www.facebook.com/press/info.php?factsheet. Accessed
November 11, 2010.

[4] Google earth. http://www.google.com/earth/index.html. Accessed Septem-
ber 15, 2010.

[5] Linkedin. http://press.linkedin.com/about. Accessed November 11, 2010.

[6] The message passing interface (mpi) standard. http://www-unix.mcs.anl.

gov/mpi/. Accessed March 21, 2011.

[7] Microsoft bing maps. http://www.bing.com/maps/. Accessed September 15,
2010.

[8] The size of the world wide web. http://www.worldwidewebsize.com/. Ac-
cessed September 15, 2010.

[9] Data, data everywhere. In The Economist, February 25, 2010. Retrieved online
from http://www.economist.com/node/15557443 on September 15, 2010.

[10] Eosdis: Manage unprecedented volumes of earth science data. In Earth Imaging
Journal, September 2010. Retrieved online from http://www.eijournal.com/

05EOSDIS.pdf on November 15, 2010.

[11] J. Abello, P. Pardalos, and M. G. C. Resende. On maximum clique problems in
very large graphs. In James M. Abello and Jeffrey Scott Vitter, editors, External
memory algorithms, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 119–130, Boston, MA, USA, 1999. American Mathe-
matical Society.

[12] James Abello, Adam L. Buchsbaum, and Jeffery Westbrook. A functional ap-
proach to external graph algorithms. Algorithmica, 32(3):437–458, 2002.

[13] Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched union-find and
its applications to terrain analysis. In Proceedings of the 22nd ACM Symposium
on Computational Geometry, pages 167–176, 2006.

[14] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127, 1988.

133

134

[15] Deepak Ajwani, Andreas Beckmann, Riko Jacob, Ulrich Meyer, and Gabriel
Moruz. On computational models for flash memory devices. In Proceedings
of the 8th International Symposium on Experimental Algorithms, pages 16–27,
2009.

[16] Deepak Ajwani, Adan Cosgaya-Lozano, and Norbert Zeh. Engineering a topo-
logical sorting algorithm for massive graphs. In Proceedings of the International
Workshop on Algorithm Engineering and Experiments, 2011.

[17] Deepak Ajwani, Roman Dementiev, and Ulrich Meyer. A computational study
of external-memory BFS algorithms. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms, pages 601–610, 2006.

[18] Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. Improved external memory
BFS implementation. In Proceedings of the International Workshop on Algo-
rithm Engineering and Experiments, 2007.

[19] Lars Arge. External memory data structures. In J. Abello, P. M. Pardalos,
and M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–357.
Kluwer Academic Publishers, 2002.

[20] Lars Arge. The buffer tree: A technique for designing batched external data
structures. Algorithmica, 37(1):1–24, 2003.

[21] Lars Arge, Gerth Stølting Brodal, and Laura Toma. On external-memory MST,
SSSP and multi-way planar graph separation. Journal of Algorithms, 53(2):186–
206, 2004.

[22] Lars Arge, Jeffrey S. Chase, Patrick Halpin, Laura Toma, Jeffrey S. Vitter, Dean
Urban, and Rajiv Wickremesinghe. Efficient flow computation on massive grid
terrain datasets. Geoinformatica, 7(4):283–313, 2003.

[23] Lars Arge, Jeffrey S. Chase, Patrick Halpin, Laura Toma, Jeffrey S. Vitter, Dean
Urban, and Rajiv Wickremesinghe. Efficient flow computation on massive grid
terrain datasets. Geoinformatica, 7(4):283–313, 2003.

[24] Lars Arge, Ulrich Meyer, Laura Toma, and Norbert Zeh. On external-memory
planar depth first search. In Proceedings of the 7th International Workshop on
Algorithms and Data Structures, pages 471–482. Springer-Verlag, 2001.

[25] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing I/O-
efficient data structures using tpie. In ESA ’02: Proceedings of the 10th An-
nual European Symposium on Algorithms, pages 88–100, London, UK, 2002.
Springer-Verlag.

[26] Lars Arge and Laura Toma. Simplified external memory algorithms for planar
dags. In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory —
SWAT 2004, volume 3111 of Lecture Notes in Computer Science, pages 493–503.
Springer Berlin / Heidelberg, 2004.

135

[27] Lars Arge, Laura Toma, and Norbert Zeh. I/O-efficient topological sorting of
planar dags. In Proceedings of the 15th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 85–93, 2003.

[28] Lars Arge and Norbert Zeh. I/O-efficient strong connectivity and depth-first
search for directed planar graphs. In Proceedings of the 44th IEEE Symposium
on Foundations of Computer Science, pages 261–270, 2003.

[29] Nicholas Barr. The economics of the welfare state. Oxford University Press, 4.
ed. edition, 2004.

[30] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Salsa: computing the sky-
line without scanning the whole sky. In Proceedings of the 2006 ACM CIKM
International Conference on Information and Knowledge Management.

[31] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based skyline
evaluation. ACM Transactions on Database Systems, 33(4), 2008.

[32] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining hierarchical and goal-directed
speed-up techniques for Dijkstra’s algorithm. In Proceedings of the 7th Inter-
national Workshop on Experimental Algorithms, volume 5038 of Lecture Notes
in Computer Science, pages 303–318. Springer-Verlag, 2008.

[33] Richard A. Becker, Chris Volinsky, and Allan R. Wilks. Fraud detection in
telecommunications: History and lessons learned. In Technometrics, volume 52,
pages 20–33, February 2010.

[34] Andreas Beckmann. Parallelizing semi-external depth first search. Master’s
thesis, Martin-Luther-Universität, Halle, Germany, October 2005.

[35] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages
322–331, New York, NY, USA, 1990. ACM Press.

[36] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, 1975.

[37] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average
number of maxima in a set of vectors and applications. Journal of the ACM,
25(4):536–543, 1978.

[38] Toby Bloom and Ted Sharpe. Managing data from high-throughput genomic
processing: A case study. In Proceedings of the 30th International Conference
on Very Large Data Bases, pages 1198–1201, 2004.

136

[39] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline oper-
ator. In Proceedings of the 17th International Conference on Data Engineering,
pages 421–430, 2001.

[40] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the 7th International Conference on World
Wide Web, WWW7, pages 107–117, Amsterdam, The Netherlands, The Nether-
lands, 1998. Elsevier Science Publishers B. V.

[41] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph struc-
ture in the web. In Proceedings of the 9th International World Wide Web Con-
ference, pages 309–320, Amsterdam, The Netherlands, The Netherlands, 2000.
North-Holland Publishing Co.

[42] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and
Jeffery R. Westbrook. On external memory graph traversal. In Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 859–
860, 2000.

[43] Giuseppe Cattaneo and Giuseppe Italiano. Algorithm engineering. ACM Com-
puting Surveys, 31:3, September 1999.

[44] cgmLab Portal. Hydro1k elevation derivative database. http://cgmlab.cs.

dal.ca/downloadarea/datasets/.

[45] C. Y. Chan, H. V. Jagadish, K. Tan, A. K. H. Tung, and Z. Zhang. On
high dimensional skylines. In International Conference on Extending Database
Technology, pages 478–495, 2006.

[46] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and
olap technology. SIGMOD Record, 26(1):65–74, 1997.

[47] Hekang Chen, Shuigeng Zhou, and Jihong Guan. Towards energy-efficient sky-
line monitoring in wireless sensor networks. In Proceedings of the 4th European
Conference on Wireless Sensor Networks, pages 101–116, Berlin, Heidelberg,
2007. Springer-Verlag.

[48] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. I/O-efficient techniques for
computing pagerank. In Proceedings of the Eleventh International Conference
on Information and Knowledge Management, CIKM ’02, pages 549–557, New
York, NY, USA, 2002. ACM.

[49] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia,
Darren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algo-
rithms. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 139–149, 1995.

137

[50] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with
presorting: Theory and optimizations. In Mieczyslaw A. Klopotek, Slawomir T.
Wierzchon, and Krzysztof Trojanowski, editors, Intelligent Information Sys-
tems, Advances in Soft Computing, pages 595–604. Springer, 2005.

[51] AT&T Labs-Research Chris Volinsky. Mining massive graphs for telecom-
munication applications. http://www.cs.umd.edu/mlg2010/keynotes/

mlg2010-keynote-volinsky.pdf, July 2010. Accessed November 11, 2010.

[52] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based technolo-
gies for intelligence analysis. Communications of the ACM, 47:45–47, March
2004.

[53] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press and McGraw-Hill, 1990.

[54] Adan Cosgaya-Lozano, Andrew Rau-Chaplin, and Norbert Zeh. Parallel com-
putation of skyline queries. In Proceedings of the 21st International Symposium
on High Performance Computing Systems and Applications, page 12, 2007.

[55] Adan Cosgaya-Lozano and Norbert Zeh. A heuristic strong connectivity algo-
rithm for large graphs. In Proceedings of the 8th International Symposium on
Experimental Algorithms, pages 113–124, 2009.

[56] Bin Cui, Hua Lu, Quanqing Xu, Lijiang Chen, Yafei Dai, and Yongluan Zhou.
Parallel distributed processing of constrained skyline queries by filtering. In Pro-
ceedings of the 2008 IEEE 24th International Conference on Data Engineering,
pages 546–555, Washington, DC, USA, 2008. IEEE Computer Society.

[57] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algo-
rithms for coarse grained multicomputers. In Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 298–307, 1993.

[58] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. En-
gineering route planning algorithms. Algorithmics of Large and Complex Net-
works: Design, Analysis, and Simulation, pages 117–139, 2009.

[59] R. Dementiev. Stxxl homepage, documentation, and tutorial. http://stxxl.
sourceforge.net, 2000.

[60] Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: Standard library
for XXL data sets. Software: Practice and Experience, 38(6):589–637, 2007.

[61] Roman Dementiev, Peter Sanders, Dominik Schultes, and Jop F. Sibeyn. Engi-
neering an external memory minimum spanning tree algorithm. In Proceedings
of the 3rd International Conference on Theoretical Computer Science, pages
195–208, 2004.

138

[62] Prasanna Kumar Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Ku-
mar. Divide and conquer approach for efficient pagerank computation. In
Proceedings of the 6th International Conference on Web Engineering, ICWE
’06, pages 233–240, New York, NY, USA, 2006. ACM.

[63] D. DeWitt and J. Gray. Parallel database systems: The future of high perfor-
mance database systems. Communications of the ACM, 35(6):85–98, 1992.

[64] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[65] Debora Donato, Luigi Laura, Stefano Leonardi, and Stefano Millozzi. The web
as a graph: How far we are. ACM Transactions on Internet Technology, 7(1),
February 2007.

[66] Debora Donato, Stefano Leonardi, Stefano Millozzi, and Panayiotis Tsaparas.
Mining the inner structure of the web graph. Journal of Physics A: Mathemat-
ical and Theoretical, 41:(12pp), May 2008.

[67] M. Ehrgott. Multicriteria optimization. Lecture Notes in Economics and Math-
ematical Systems. Springer-Verlag, 2000.

[68] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.
ACM Computing Surveys, 37(2):138–163, 2005.

[69] Yunjun Gao, Gencai Chen, Ling Chen, and Chun Chen. Parallelizing progres-
sive computation for skyline queries in multi-disk environment. In Proceedings
of the 17th International Conference on Database and Expert Systems Applica-
tions, pages 697–706, 2006.

[70] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
tration hierarchies: Faster and simpler hierarchical routing in road networks.
In Proceedings of the 7th International Workshop on Experimental Algorithms,
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer-
Verlag, 2008.

[71] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector computation
in large data sets. In Proceedings of the 31st International Conference on Very
Large Data Bases, pages 229–240, 2005.

[72] Andreas Gogol-Döring and Knt Reinert. Biological Sequence Analysis using the
SeqAn C++ Library. CRC Press, 2010.

[73] Andrew V. Goldberg and Renato Werneck. Computing point-to-point shortest
paths from external memory. In Proceedings of the International Workshop on
Algorithm Engineering and Experiments, pages 26–40, 2005.

[74] Bruce C. Greenwald and Joseph E. Stiglitz. Externalities in economies with
imperfect information and incomplete markets. The Quarterly Journal of Eco-
nomics, 101(2):229–264, 1986.

139

[75] Xiangquan Gui, Yuanping Zhang, and Xiaohong Hao. An almost linear I/O
algorithm for skyline query. Journal of Software, 5(2):235–242, February 2010.

[76] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 47–57, New York, NY, USA, 1984. ACM Press.

[77] Un gyu Baek, Sukhyun Ahn, and Seung won Hwang. Dynamic partitioning for
parallel skyline computation. In The 1st International Conference on Emerging
Databases, 2009.

[78] Herman Haverkort and Laura Toma. I/O-efficient algorithms on near-planar
graphs. In Jos Correa, Alejandro Hevia, and Marcos Kiwi, editors, LATIN 2006:
Theoretical Informatics, volume 3887 of Lecture Notes in Computer Science,
pages 580–591. Springer Berlin / Heidelberg, 2006.

[79] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math-
ematische Annalen, 38:459–460, 1891.

[80] Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi. Skyline
queries against mobile lightweight devices in manets. In Proceedings of the 22nd
International Conference on Data Engineering, page 66, Washington, DC, USA,
2006. IEEE Computer Society.

[81] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: a balanced tree
structure for peer-to-peer networks. In Proceedings of the 31st International
Conference on Very Large Data Bases, pages 661–672, 2005.

[82] Jing Jiang, Yafei Dai, and Ben Y. Zhao. Understanding latent interactions in
online social networks. In Proceedings of The 10th ACM SIGCOMM Internet
Measurement Conference, November 2010.

[83] Ibrahim Kamel and Christos Faloutsos. Parallel r-trees. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 195–
204, New York, NY, USA, 1992. ACM.

[84] Donald E. Knuth. The art of computer programming, volume 1 (3rd ed.): fun-
damental algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 1997.

[85] Donald E. Knuth and Jayme Luiz Szwarcfiter. A structured program to generate
all topological sorting arrangements. Information Processing Letters, 3(2):64,
1974.

[86] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online al-
gorithm for skyline queries. In Proceedings of the 28th International Conference
on Very Large Data Bases, 2002.

140

[87] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.
The web and social networks. Computer, 35(11):32–36, 2002.

[88] Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures
for solving graph problems in external memory. In Proceedings of the 8th
IEEE Symposium on Parallel and Distributed Processing (SPDP ’96), SPDP
’96, pages 169–, Washington, DC, USA, 1996. IEEE Computer Society.

[89] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. Journal of the ACM, 22(4):469–476, 1975.

[90] Luigi Laura, Stefano Leonardi, Stefano Millozzi, Ulrich Meyer, and Jop Sibeyn.
Algorithms and experiments for the webgraph. In Algorithms — ESA 2003,
volume 2832 of Lecture Notes in Computer Science, pages 703–714. Springer
Berlin / Heidelberg, 2003.

[91] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Approaching
the skyline in z order. In Proceedings of the 33rd International Conference on
Very Large Data Bases, pages 279–290, 2007.

[92] Yuhua Li, Dongsheng Duan, Guanghao Hu, and Zhengding Lu. Discovering hid-
den group in financial transaction network using hidden markov model and ge-
netic algorithm. Fourth International Conference on Fuzzy Systems and Knowl-
edge Discovery, 5:253–258, 2009.

[93] Anil Maheshwari and Norbert Zeh. I/O-optimal algorithms for planar graphs
using separators. In Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 372–381, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics.

[94] Anil Maheshwari and Norbert Zeh. A survey of techniques for designing I/O-
efficient algorithms. In Algorithms for Memory Hierarchies, volume 2625 of
Lecture Notes in Computer Science, pages 36–61. Springer-Verlag, 2002.

[95] Anil Maheshwari and Norbert Zeh. I/O-optimal algorithms for outerplanar
graphs. Journal of Graph Algorithms and Applications, 8:47–87, 2004.

[96] Anil Maheshwari and Norbert Zeh. I/O-efficient planar separators. SIAM Jour-
nal on Computing, 38(3):767–801, 2008.

[97] Anil Maheshwari and Norbert Zeh. I/O-efficient algorithms for graphs of
bounded treewidth. Algorithmica, 54:413–469, 2009.

[98] Kurt Mehlhorn and Ulrich Meyer. External-memory breadth-first search with
sublinear I/O. In Proceedings of the 10th European Symposium on Algorithms,
volume 2461 of Lecture Notes in Computer Science, pages 723–735. Springer-
Verlag, 2002.

141

[99] Kurt Mehlhorn, Stefan Näher, and Peter Sanders. Engineering DFS-
based graph algorithms. http://www.mpi-inf.mpg.de/~mehlhorn/ftp/

EngineeringDFS.pdf, 2007.

[100] Ulrich Meyer and Vitaly Osipov. Design and implementation of a practical
I/O-efficient shortest paths algorithm. In Irene Finocchi and John Hershberger,
editors, Proceedings of the International Workshop on Algorithm Engineering
and Experiments, pages 85–96. SIAM, 2009.

[101] Ulrich Meyer, Peter Sanders, and Jop Sibeyn, editors. Algorithms for mem-
ory hierarchies: advanced lectures, volume 2625 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Heidelberg, 2003.

[102] Ulrich Meyer and Norbert Zeh. I/O-efficient undirected shortest paths. In
Proceedings of the 11th Annual European Symposium on Algorithms, pages 434–
445, 2003.

[103] Ulrich Meyer and Norbert Zeh. I/O-efficient undirected shortest paths with
unbounded edge lengths. In Proceedings of the 14th European Symposium on
Algorithms, pages 540–551, 2006.

[104] Thomas Mølhave, Pankaj K. Agarwal, Lars Arge, and Morten Revsbaek. Scal-
able algorithms for large high-resolution terrain data. In Proceedings of the 1st
International Conference and Exhibition on Computing for Geospatial Research
and Application, COM.Geo ’10, pages 20:1–20:7, New York, NY, USA, 2010.
ACM.

[105] D. Moore. Fast Hilbert curve generation, sorting, and range queries. http:

//www.tiac.net/~sw/2008/10/Hilbert/moore/hilbert.c, 2000.

[106] Kamesh Munagala and Abhiram G. Ranade. I/O-complexity of graph algo-
rithms. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 687–694, 1999.

[107] Amit A. Nanavati, Siva Gurumurthy, Gautam Das, Dipanjan Chakraborty,
Koustuv Dasgupta, Sougata Mukherjea, and Anupam Joshi. On the structural
properties of massive telecom call graphs: findings and implications. In Proceed-
ings of the 15th ACM international conference on Information and knowledge
management, pages 435–444, New York, NY, USA, 2006. ACM.

[108] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algo-
rithm for skyline queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 467–478, New York, NY, USA, 2003.
ACM Press.

[109] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive sky-
line computation in database systems. ACM Transactions on Database Systems,
30(1):41–82, 2005.

142

[110] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung
Im. Parallel skyline computation on multicore architectures. In Proceedings of
the 2009 IEEE International Conference on Data Engineering, pages 760–771,
Washington, DC, USA, 2009. IEEE Computer Society.

[111] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer, 1985.

[112] N. Pržulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet fre-
quency distributions in protein–protein interaction networks. Bioinformatics,
22:974–980, April 2006.

[113] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of the Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 161–172, New York, NY, USA, 2001. ACM.

[114] Peter Sanders. Algorithm engineering — an attempt at a definition. In Efficient
Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday, pages 321–340, Berlin, Heidelberg, 2009. Springer-Verlag.

[115] Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile route planning.
In Proceedings of the 16th European Symposium on Algorithms, volume 5193 of
Lecture Notes in Computer Science, pages 732–743. Springer-Verlag, 2008.

[116] Warren Schudy. Finding strongly connected components in parallel using
O(log2n) reachability queries. In Proceedings of the 20th Symposium on Par-
allelism in Algorithms and Architectures, pages 146–151, New York, NY, USA,
2008. ACM.

[117] Dominik Schultes. External memory minimum spanning trees. http://algo2.
iti.uni-karlsruhe.de/schultes/emmst, 2003.

[118] Dominik Schultes. External memory spanning forests and connected com-
ponents. http://algo2.iti.uni-karlsruhe.de/dementiev/files/cc.pdf,
September 2003.

[119] S. B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269–287, 1983.

[120] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries. In Pro-
ceedings of the 32nd International Conference on Very Large Data Bases, pages
751–762, 2006.

[121] Jop Sibeyn, James Abello, and Ulrich Meyer. Heuristics for semi-external depth-
first search on directed graphs. In Proceedings of the 14th ACM Symposium on
Parallel Algorithms and Architectures, pages 282–292, 2002.

143

[122] Jop F. Sibeyn. From parallel to external list ranking. Technical report, Max
Planck Institut für Informatik, Saarbrücken, Germany, 1997.

[123] Jop. F. Sibeyn. External connected components. In Proceedings of the 9th
Scandinavian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in
Computer Science, pages 468–479. Springer-Verlag, 2004.

[124] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline
computation. In Proceedings of the 27th International Conference on Very Large
Data Bases, pages 301–310, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[125] Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, 1972.

[126] Yuanyuan Tian, Richard C. Mceachin, Carlos Santos, David J. States, Jig-
nesh M. Patel, and Martin Bishop. Bioinformatics saga: A subgraph matching
tool for biological graphs. Bioinformatics, 23(2):232–239, 2007.

[127] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool for approximate large
graph matching. Proceedings of the 24th International Conference on Data
Engineering, 0:963–972, 2008.

[128] George Valkanas and Apostolos N. Papadopoulos. Efficient and adaptive dis-
tributed skyline computation. In Michael Gertz and Bertram Ludäscher, edi-
tors, SSDBM, volume 6187 of Lecture Notes in Computer Science, pages 24–41.
Springer, 2010.

[129] Darren Erik Vengroff. A transparent parallel I/O environment. In In Proceedings
of the third DAGS Symposium on Parallel Computation, pages 117–134, July
1994.

[130] Jeffrey Scott Vitter. External memory algorithms and data structures: dealing
with massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[131] Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foun-
dations and Trends in Theoretical Computer Science, 2(4):305–474, 2006.

[132] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space
partitioning for efficient parallel skyline computation. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 227–
238, New York, NY, USA, 2008. ACM.

[133] Shiyuan Wang, Beng Chin Ooi, and Anthony K. H. Tung. Efficient skyline query
processing on peer-to-peer networks. In Proceeding of the IEEE International
Conference on Data Engineering, pages 1126–1135, 2007.

144

[134] Shiyuan Wang, Quang Hieu Vu, Beng Chin Ooi, Anthony K. Tung, and Lizhen
Xu. Skyframe: a framework for skyline query processing in peer-to-peer sys-
tems. The VLDB Journal, 18(1):345–362, 2009.

[135] Ping Wu, Caijie Zhang, Ying Feng, Ben Y. Zhao, Divyakant Agrawal, and
Amr El Abbadi. Parallelizing skyline queries for scalable distribution. In Pro-
ceedings of the 10th International Conference on Extending Database Technol-
ogy, pages 112–130, 2006.

[136] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. Xu Yu, and Q. Zhang. Efficient compu-
tation of the skyline cube. In Proceedings of the 31st International Conference
on Very Large Data Bases, pages 241–252, 2005.

[137] Y. Zhang and M. S. Waterman. An Eulerian path approach to global multiple
alignment for DNA sequences. Journal of Computational Biology, 10:803–820,
2003.

[138] Yu Zhang and Michael S. Waterman. An Eulerian path approach to local
multiple alignment for DNA sequences. Proceedings of the National Academy
of Sciences of the United States of America, 102(5):1285–1290, 2005.

