
GROUP KEY SCHEMES
FOR SECURITY IN MOBILE AD HOC NETWORKS

by

Depeng Li

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2010

c© Copyright by Depeng Li, 2010

ii

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “GROUP

KEY SCHEMES FOR SECURITY IN MOBILE AD HOC NETWORKS”

by Depeng Li in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Dated: April 6, 2010

Supervisor: __Dr. Srinivas Sampalli _________

External Examiner: ___Dr. Guang Gong __ __________

Examining Committee: __ Dr. Keith Johnson _____________

 ___Dr. Nur Zincir-Heywood________

DALHOUSIE UNIVERSITY

Date: April 6, 2010

Author: Depeng Li

Title: GROUP KEY SCHEMES FOR SECURITY IN MOBILE AD HOC

NETWORKS

Department or School: Faculty of Computer Science

Degree: Ph.D. Convocation: May Year: 2010

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or otherwise reproduced without the author’s written
permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring only proper
acknowledgement in scholarly writing) and that all such use is clearly acknowledged.

iii

Table of Contents

List of Tables ix

List of Figures x

Abstract xiii

Glossary xiv

Acknowledgements xvii

Chapter 1 Introduction 1

1.1 Group Communications and Security 1

1.2 Motivation and Objectives . 5

1.3 Contributions and Proposed Work . 7

1.4 Outline . 9

Chapter 2 Scope and Background Knowledge 10

2.1 Group Communication in MANETs 10

2.2 Secure Group Communication . 11

2.2.1 Security for Group Communication 12

2.2.2 Security Model . 14

iv

2.2.4 Secure Group Communication (SGC) 17

2.2.5 Group Membership Changes 17

2.2.6 Security Requirements for Group Key Management 20

2.3 Components and Criteria of Group Key Schemes 23

2.3.1 Criteria to Evaluate Group Key Management 27

2.4 Anticipated Significance of Contributions 29

Chapter 3 Background and Literature Survey 31

3.1 Cryptographic Techniques . 31

3.1.1 Two-Party Diffie-Hellman Key Exchange Scheme 31

3.1.2 One-Way Hash Function . 32

3.1.3 Hash Chain . 32

3.1.4 ID-based Authentication . 33

3.2 Contributory Group Key Establishment and Management Schemes . 34

3.2.1 Burmester-Desmedt (BD) . 35

3.2.2 Octopus Protocol . 35

3.2.3 Group Diffie-Hellman (GDH) 37

3.2.4 Tree-based Group Diffie-Hellman (TGDH) 37

3.2.5 Skinny TRee (STR) . 41

3.2.6 Distributed One-way hash Function Tree (D-OFT) 42

3.2.7 Distributed Logical Key Hierarchy (D-LKH) 43

3.3 Distributed Algorithm to Forward Partial Keys 44

v

3.3.1 Connected Dominating Set for GDH (CDS-GDH) 44

3.3.2 Shortest Path for GDH (SP-GDH) 45

3.4 Centralized Group Key Schemes . 45

3.5 FEA-M and Improved Variants . 46

3.5.1 FEA-M and the Improved Variants 47

Chapter 4 Contributions . 50

4.1 Overview and Assumptions of Contributions 50

4.1.1 Overview . 50

4.1.2 Assumptions . 52

4.2 Contribution # 1: Efficient Individual Rekeying Schemes 54

4.2.1 Overview of the First Contribution 55

4.2.2 TGDH-H . 57

4.2.3 TGDH+ . 68

4.3 Contribution # 2: Periodic Group Rekeying Schemes 73

4.3.1 Join Protocol . 75

4.3.2 Rekeying Protocol at the End of the Interval 77

4.3.3 Merging and partition protocols 82

4.4 Contribution # 3: Maximum Matching Algorithms 84

4.4.1 Maximum Matching Algorithms 84

4.4.2 Vertex Shrinking Algorithm 86

4.4.3 Utilization of Maximum Matching Algorithms 89

vi

4.5 Contribution # 4: Hybrid Architecture 94

4.5.1 Overview of the Fourth Contribution 94

4.5.2 Hybrid Architecture . 96

4.6 Contribution # 5: Further Improvements for FEA-M 99

4.6.1 A Vulnerability with FEA-M and an Improved Variant 99

4.6.2 Further Improvement for FEA-M 100

4.6.3 Reliable transportation to handle packet loss 101

Chapter 5 Performance Analyses, Experimental Results and Secu-

rity Discussion . 108

5.1 Performance Analyses . 109

5.1.1 Metrics for Performance Evaluation 109

5.1.2 Performance Evaluation for Each Group Key Scheme 111

5.1.3 Performance Comparison for Group Rekey Schemes 118

5.1.4 Experimental Results . 123

5.1.5 STR vs. TGDH vs. TGDH-H vs. TGDH+ 126

5.1.6 Queue-Batch vs. TGDH vs. TGDH-ASAP 127

5.1.7 Hybrid Architecture . 129

5.1.8 DST-M2 vs. SP-GDH . 133

5.2 Security Discussion . 133

5.2.1 Authentication Protocols . 134

5.2.2 Security Analyses . 136

vii

Chapter 6 Conclusion . 139

6.1 Summary of Research Work . 139

6.2 Integrated Solution . 140

Bibliography . 142

viii

List of Tables

Table 3.1 Burmester-Desmedt (BD) Protocol 35

Table 3.2 GDH.3 Protocol . 39

Table 4.1 Dominating Algorithm . 64

Table 4.2 TGDH-H: Leave Protocol . 66

Table 4.3 Amortized Path (AP) Protocol 80

Table 4.4 M-SAIDA Algorithm . 83

Table 4.5 Synchronous Maximal Matching (SM2) Protocol 87

Table 4.6 Depth-first Spanning Tree algorithm M2 (DST-M2) Protocol . 88

Table 4.7 Vertex Shrinking Algorithm . 88

Table 4.8 Integrated Algorithms to Achieve Group Key Establishment . . 89

Table 4.9 Multimedia Data Compression Algorithm - RLE 101

Table 4.10 rFEA-M Algorithm . 102

Table 4.11 Correction for the improved FEA-M variant 105

Table 4.12 IDA Algorithm . 106

Table 5.1 Computational Cost . 120

Table 5.2 Communication Overhead and Memory Consumption 121

ix

List of Figures

Figure 2.1 Group Membership Changes - Member Join Scenario 18

Figure 2.2 Group Membership Changes - Member Leave Scenario 19

Figure 2.3 Group Membership Changes - Member Partition Scenario . . . 20

Figure 2.4 Group Membership Changes - Member Merge Scenario 21

Figure 2.5 Group Key Security Requirement Summary 21

Figure 2.6 Group Key Security Requirement - Key Indepedence 22

Figure 2.7 Group Key Security Requirement - Forward Secrecy 23

Figure 2.8 Group Key Security Requirement - Backward Secrecy 24

Figure 2.9 Group Key Security Requirement - Against Collusion 25

Figure 2.10 Group Key Category . 26

Figure 2.11 Centralized Group Key . 27

Figure 2.12 Contributory Group Key . 28

Figure 2.13 Group Key Performance Criteria 28

Figure 3.1 Sponsor for TGDH . 40

Figure 4.1 Outline of Contributions . 50

Figure 4.2 TGDH-H: Key Tree Updates for Group Members Joining . . . 57

Figure 4.3 TGDH-H: Leave Protocol . 61

Figure 4.4 TGDH-H: Key Tree Updates for Group Members Leaving . . . 62

x

Figure 4.5 TGDH-H: Merge Protocol for 8 sub-groups 67

Figure 4.6 TGDH+: Key Tree Updates for Group Members Joining . . . 69

Figure 4.7 TGDH+: Leave Protocol . 70

Figure 4.8 TGDH+: Group Key Updates for Case 2 72

Figure 4.9 Periodical Group Key - Fewer Join Members than Leave Members 74

Figure 4.10 Periodical Group Key - More Join Members than Leave Members 75

Figure 4.11 Intermediate Result by Using the SM2 Algorithm - Round 2 . 90

Figure 4.12 Intermediate Result by Using the SM2 Algorithm - Round 3 . 91

Figure 4.13 Intermediate Result by Using the SM2 Algorithm - Round 4 . 91

Figure 4.14 Intermediate Result by Using the DST-M2 Algorithm - Round 1 92

Figure 4.15 Intermediate Result by Using the DST-M2 Algorithm - Round 2 92

Figure 4.16 Intermediate Result by Using the DST-M2 Algorithm - Round 3 93

Figure 4.17 Key Tree Construction with the M2 Algorithm - Round 1 . . . 93

Figure 4.18 Key Tree Construction with the M2 Algorithm - Round 2 . . . 94

Figure 4.19 Key Tree Construction with the M2 Algorithm - Round 3 . . . 94

Figure 4.20 Centralized Group Key Management 96

Figure 4.21 Contributory Group Key Management 97

Figure 4.22 Multimedia Communication Model 100

Figure 4.23 Compression for Blocks with All 0s 101

Figure 5.1 Group Session Model . 112

Figure 5.2 Individual Rekey: Number of Exponentiations for Session 1 . . 127

xi

Figure 5.3 Individual Rekey: Total Number of Multicasts for Session 1 . . 128

Figure 5.4 Individual Rekey: Total Number of Exponen. for Session 1 . . 128

Figure 5.5 Individual Rekey: Total Number of Signing Operations for Ses-

sion 1 . 129

Figure 5.6 Individual Rekey: Number of Exponentiations for Session 2 . . 129

Figure 5.7 Individual Rekey: Total Number of Multicasts for Session 2 . . 130

Figure 5.8 Individual Rekey: Total Number of Exponen. for Session 2 . . 130

Figure 5.9 Individual Rekey: Total Number of Signing Operations for Ses-

sion 2 . 131

Figure 5.10 Periodical Rekey: Number of Exponentiations 131

Figure 5.11 Periodical Rekey: Total Number of Multicasts 132

Figure 5.12 Periodical Rekey: Total Number of Exponentiations 132

Figure 5.13 Periodical Rekey: Total Number of Signing Operations 133

Figure 5.14 Communications Overhead: Hybrid vs. Straightforward 133

Figure 5.15 Communication Overhead: DST-M2 vs. SP-GDH 134

xii

Abstract

In dynamic peer group communications, security has been in high demand by many
applications in recent years. One of the more popular mechanisms to satisfy these
security requirements is the group key scheme in which the group key is to be shared
by each group communication participant. However, how to establish and manage the
group key efficiently in order to protect such communications imposes new challenges
- especially when such schemes are to be deployed on resource-limited networks such
as Mobile Ad hoc Networks (MANETs). The basic needs of such network settings
require that the group key schemes must demonstrate not only high performance but
also fault-tolerance. Furthermore, to encrypt group communication messages effi-
ciently is essential.
Therefore, it is anticipated that the contributions of this thesis will address the de-
velopment of lightweight and high performance key management protocols for group
communications while guaranteeing the same level of security as other approaches.
These contributions are listed below:
First, two efficient individual rekey schemes, in which most group members process
one-way hash functions and other members perform Diffie-Hellman operations, are
proposed to obtain performance efficiency.
Second, a periodic batch rekey scheme is proposed to handle the out-of-sync problem
resulting from individual rekeying schemes in cases where there is a high rate of group
member requests for joining/leaving.
Third, scalable maximum matching algorithms (M2) are designed to incorporate a
tree-based group key generation scheme to forward the partial keys to other group
members.
Fourth, a hybrid group key management architecture is proposed as well to combine
the advantages of centralized and contributory group key schemes.
Fifth, a Fast Encryption Algorithm for Multimedia (FEA-M) is enhanced to overcome
the vulnerabilities of its original solution and its former improved variant.
Performance analyses and experimental results indicate that the proposed approaches
reduce computational costs and communication overhead as compared to other pop-
ular protocols.

xiii

Glossary

ACK Acknowledge

AG Anonymous Gossip

AODV Ad hoc On-Demand Distance Vector Routing

ARQ Automatic Retransmission reQuest

CA Certification Authority

CDS Connected Dominating Set

CPU Central Processing Unit

DARPA Defense Advanced Research Projects Agency

DBTDH Decision Binary Tree Diffie-Hellman problem

DDH Decision Diffie-Hellman problem

DH Diffie-Hellman

DoS Denial of Service

DPG Dynamic Peer Groups

DST-M2 Depth-first Spanning Tree Maximum Matching

ELK Efficient Large-group Key

EVS Extended Virtual Synchrony

FEA-M Fast Encryption Algorithm for Multimedia

FEC Forward Error Correction

GPS Global Positioning System

xiv

ID-based Identification-based

IDA Information Dispersal Algorithm

IETF Internet Engineering Task Force

IRTF Internet Research Task Force

KDC Key Distribution Center

LAN Local Area Network

LKH Logical Key Hierarchy

M2 Maximum Matching

MAC Media Access Control (layer/address)

MAC Message Authentication Code (algo-

rithm/protocol)

MANETs Mobile Ad hoc Networks

MAODV Multicast Ad hoc On-Demand Distance Vector

Routing

MBone Multicast Backbone

MSEC Multicast Security

NACK Negative Acknowledge

OS Operation System

OSI Open System Interconnection

PDA Personal Digital Assistant

xv

PIM Protocol Independent Multicasting

PIN Personal Identification Number

PKI Public Key Infrastructure

RALM Reliable Adaptive Lightweight Multicast

RDG Router Driven Gossip

rFEA-M Robust FEA-M

RLE Routine Length Encode

RMA Reliable Multicast Algorithm

RMDP Reliable Multicast data Distribution Protocol

RTP Real-Time Protocol

SGC Secure Group Communication

SM2 Synchronous Maximum Matching

SMuG Secure Multicast Group

STR Skinny Tree

TCP Transmission Control Protocol

TGDH Tree-based Group Diffie-Hellman

VPN Virtual Private Networks

VS View Synchrony (Service)

VS Vertex Shrinking (Algorithm)

WAN Wide Area Network

xvi

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Srinivas Sampalli for

his extensive academic support.

I would also like to thank Dr. Keith Johnson, Dr. Nur Zincir-Heywood and Dr.

Guang Gong for willing to be a part of the committee and taking time to read my

thesis.

Special thanks go to my parent, Xiumei Zhang and Tingyuan Li, my wife, Xiaowen

Ge and my son Ang Li for their spiritual supports during my Ph.D study at Dalhousie

University.

xvii

Chapter 1

Introduction

1.1 Group Communications and Security

The late twentieth and early twenty-first centuries have witnessed the rapid prolifer-

ation of group communications which facilitate the exchange of information among

a number of group application participants. A wide range of group communication

applications such as audio, video, and whiteboard has been deployed [1], [2] and

then, they have been extended rapidly to fields such as replicated servers providing

database/web/time services, tele/video-conferencing, network layer multicasts, mul-

tiparty games, white-boards, and distributed simulations, grid computing and the

deployment of Virtual Private Networks (VPNs) [38]. The ease and efficiency of

group communication have delivered a new level of productivity for business, organi-

zations and individuals.

In general, group communication applications can be classified broadly into two types:

centralized and contributory [10], [19], [26], [38], [44]. Like typical client-server ap-

plications, centralized group applications assume the one-to-many communication

pattern in which the group size is very large (e.g. thousands of group members) and

in which there are a few senders and many receivers. However, in recent years, a

1

2

paradigm shift from the traditional client-server model to the peer-to-peer model has

changed the landscape of network communications. Organized with the peer-to-peer

model, contributory group applications, which assume the many-to-many communi-

cation pattern, become more and more prosperous. In such applications every group

member has the potential to be both a sender and a receiver. Consequently, any

group member can be a message source as well as a recipient. Dynamic Peer Groups

(DPGs), one kind of contributory group communication application, turns out to be

one of the more popular services in business management, military services, emer-

gency rescue and even entertainment activities during the past decade. Unlike large

multicast applications, DPGs are peer-based. Due to the nature of peer-to-peer com-

munication, DPGs are relatively small in group size (10s–100s) [6], [25], [26]. Group

members in DPGs can be connected across the Internet, Local Area Networks (LAN),

Wide Area Networks (WAN) or Mobile Ad Hoc Networks (MANETs) and they can

join or leave the group dynamically. Many network applications involve DPGs. Ex-

amples of DPGs include peer-to-peer tele/video-conferencing, peer-to-peer interactive

applications and online peer-to-peer multiparty games.

Not only do DPGs introduce efficiency but also increase risk as well. The ease of

use of DPGs allows authorized users to access resources from anywhere at anytime

and also makes it easier for the unauthorized users and malicious programs to attack

the DPGs. Security in group communications is critical for many of these collabora-

tive applications. In fact, group communication messages travel through many more

3

links on the network than unicast data does. Consequently, group communication

messages have a greater potential for being attacked. A lack of security obstructs

the deployment of group communication applications (DPGs etc.). Without security

mechanisms, sensitive information cannot be protected and group application privacy

cannot be safeguarded [38].

Several organizations and researchers are focussing on security issues in group com-

munications. The well-known Internet Research Task Force (IRTF) sponsors two

work groups, the Secure Multicast Group (SMuG) and the Group Security (GSEC),

to investigate and solve security problems for group communications. The Internet

Engineering Task Force (IETF) has set up a working team as well, namely, Multicast

Security (MSEC), to draft and standardize security technology for group communi-

cations in networks, wired or wireless. In addition, research projects such as Horus

and Ensemble at Cornell University [49], [50], [51], SecureRing at the University of

California, Santa Barbara [24], Rampart at AT&T [46], and Antigone at the Univer-

sity of Michigan [31] have focussed on secure group communications.

Protecting DPGs requires a layered defense-in-depth security model. The group key

scheme is an important part of this model. This practical and efficient solution de-

ploys a symmetric group key shared by all group application participants. With the

support of this shared key (group key), group communication data can be encrypted,

which means that, being in possession of the group key, group members can be trusted.

Since the group key is so critical, group key schemes are necessary to ensure that only

4

current group members are able to get access to the group key. Group key schemes

include group key establishment and management schemes, the methods to generate

and update the group key, respectively. Two components comprise group key estab-

lishment/management: one is the technique to calculate/agree on the unique group

key for every group member, and the other is the method for delivering key material

(partial keys) to every group member.

Some group key schemes are designed to make every group member agree on the

group key in an efficient, secure and timely way. Following the nature of the group

communication model, group key schemes can be classified into two types, centralized

and contributory. In brief, the centralized method relies on the key server and the

contributory method needs the collaboration of all group members. For example, in

the Network Security Service project at the University of Texas, Austin, a centralized

group key scheme is implemented to provide a secure group communication service

on the Internet. In this project, a key tree method and a scalable and reliable group

key management service, Keystone, are maintained by a key server which distributes

a group key to other group members via secure channels [64], [68], [72]. An example

of the contributory group key scheme is the Secure Spread project [3] which is a com-

ponent of the Dynamic Coalitions project funded by the Defense Advanced Research

Projects Agency (DARPA). Secure Spread includes the implementation of a few pop-

ular contributory secure group key schemes such as Group Diffie-Hellman (GDH) [6]

and Tree-based Group Diffie-Hellman (TGDH) [25] over reliable, robust and ordered

5

network settings. This software guarantees the provision of ordered messages, re-

silience to any sequence of group membership events and fault tolerance within the

group key management service.

1.2 Motivation and Objectives

New breakthroughs in wireless have brought more options than ever to the mobile

worker. Meanwhile, the significant enhancement of the processing capability for com-

munication devices (e.g. laptops, wearable computers and high-end Smartphones)

enables ubiquitous computing. Therefore, it is not a surprise that deploying DPGs

in wireless and mobile environments becomes an attractive choice. In such networks

as MANETs, mobile nodes establish routes dynamically among themselves to form

their own network on the fly without an existing infrastructure and thus make a good

choice for DPGs. However, the wireless and mobile nature of such networks makes

it more difficult to secure network communication in MANETs than in classical net-

works such as WAN and LAN.

Firstly, most mobile networks lack a native infrastructure. Hence, they pose non-

trivial challenges for the deployment of group key schemes. Traditional centralized

schemes which rely on an on-line key server cannot be a practical choice because of

the lack of infrastructure in such networks.

Secondly, such networks have stringent resource constraints. Some low-end mobile

nodes tend to be restricted in their computational capability and cannot perform

6

many and frequent computational-intensive operations such as public key crypto-

graphic operations. Furthermore, the communication bandwidth is limited as well.

Most previous contributory group key schemes with high computational cost and

huge communication overheads cannot be deployed on such networks. We notice

as well that even the most efficient contributory group key schemes such as TGDH

[25] and STR [26] require too many public key operations which result in heavy-

weight computations. Performance consideration in deploying group key schemes in

resource-constrained environments drives the cryptographic/security designer to pro-

pose more efficient methods for wireless and mobile clients.

Thirdly, such networks generally have an open peer-to-peer architecture, sharing the

wireless medium and a highly dynamic network topology. Unlike wired networks

where an adversary must gain physical access to the network, it is easier for illegit-

imate users and malicious adversaries to access the wireless channel. As a result,

damage, such as leaking secret information, is more likely to occur.

Therefore, novel group key architectures, algorithms, or protocols should be proposed

which can not only handle the absence of a key server but also work efficiently to sat-

isfy stricter performance requirements. The focus of this research is to develop a

suite of efficient and reliable group key schemes/architectures for DPGs. Further-

more, strong and efficient encryption algorithms must be studied as well to present

confidential services. Consequently, the objective of this research is to provide key

management schemes for group communications which can present an access control

service for group key and group communication data.

7

1.3 Contributions and Proposed Work

This thesis is devoted to promoting performance and fault-tolerance for group key

schemes. The purpose of this research is to provide a set of group key schemes to

safeguard group communication data in a proactive way. Since the one-way hash

function (Hash) is computationally more efficient than the Diffie-Hellman operation

while providing the same level of security, it is utilized in my proposed solutions. The

main contributions are given below.

1. The first contribution provides two efficient individual contributory group key

management schemes. The key ideas in the proposed approaches are as follows:

a) To improve the efficiency of TGDH, the proposed approach updates the group key

via a Hash function for a joining group member and postpones the Diffie-Hellman-

based key updates until group members leave; it is called TGDH-H.

b) To enhance the efficiency of a), the proposed method presents an efficient individ-

ual rekey scheme in which most group members process one-way hash functions and

only a few members perform Diffie-Hellman operations; it is called TGDH+.

2. The second is a periodical batch rekeying scheme. Proposed group key manage-

ment schemes such as TGDH-H and TGDH+ result in an out-of-sync problem when

the rate of join/leave requests is too high. To deal with this casual scenario, a periodic

batch rekey method which updates the group key at the end/start of the periodic in-

terval will be presented. The out-of-sync problem can be solved and the rekey group

key scheme should not crash when the rate of join/leave requests is too high since the

periodic rekey strategy does not respond to every single group membership change.

8

3. The third contribution is a scheme to deliver key material for contributory group

key establishment schemes. Firstly, for tree-based group key agreements, to deliver

partial key messages efficiently, two Maximum Match (M2) algorithms are proposed

to accommodate binary key tree construction in MANETs. While most previous algo-

rithms, [4] [62], have been primarily sequential, M2 is a parallel algorithm. Secondly,

M2 algorithms require that each member only keeps track of its matched partner

instead of remembering the entire group member list which reduces the storage cost

for every node.

4. The fourth proposal is a novel hybrid group key management architecture to ac-

commodate the centralized and contributory group key management schemes. In

particular, the method enables fast switching between centralized and contributory

schemes with minimal communication costs and computational overheads and uses

fewer keys.

5. The fifth is concerned with encryption algorithms. In order to encrypt multimedia

streams efficiently which can be delivered in real-time group environments, a Fast

Encryption Algorithm for Multimedia (FEA-M) has been proposed [70], [69]. Crypt-

analysis of this technique, [32], [33], [34], [35], has identified its weaknesses and an

improved variant has been suggested, [35]. In this thesis, crypto-analyses are utilized

to identify further weaknesses in the original FEA-M as well as in the improved vari-

ant. The proposed solution provides message integrity, guarantees zero packet loss

and protects against specific known plaintext attacks.

9

In summary, the research in this thesis proposal has been developed to provide effi-

cient and fault-tolerant group key schemes to secure messages in DPGs.

Future research will focus on the group key schemes in Byzantine mode to manage

the group key in case where inside group members are compromised.

1.4 Outline

The remainder of this thesis is divided into six chapters. The security background

of group communications is introduced in Chapter 2. Previous group key schemes,

FEA-M and cryptographic primitives are demonstrated in Chapter 3. Contributions

for the thesis are described in Chapter 4. Performance analyses, experimental results

and security discussions are presented in Chapter 5. An integrated solution including

all my proposals is provided in Chapter 6. Concluding remarks are summarized in

Chapter 7.

Chapter 2

Scope and Background Knowledge

2.1 Group Communication in MANETs

Group-oriented systems have been developed and implemented for a long time. Serveral

group communication systems such as Horus, Ensemble and Spread are deployed in

classical network settings such as LAN, WAN and the Internet. In order to launch

successful group communications, guaranteeing fault-tolerant and replicated services

is required, in which the following functionalities are necessary:

- Group membership service: all current alive and connected group members are

put on the list and this list should be delivered to every current group member.

Furthermore, this list should be updated whenever the group member joins or leaves.

- Reliable and ordered message delivery service.

MANETs have experienced difficulty satisfying the above requirements due to such

characteristics as link failures, network partitions and node crashes. Although not

easy to do, recent research and development has introduced successful implementa-

tions of a set of group communication systems in MANETs based upon the delivery of

realiable multicast and synchronized update group membership lists. JazzEnsemble

[76], for example, utilizes deterministic approaches, in which every group member is

10

11

associated with a fuzzy level. The level indicates the group node’s ability to process

and deliver messages. This method copes with highly mobile nodes and handles wire-

less communications successfully. Unlike JazzEmble, Random walk [77] is a different

example which explores probabilistic approaches rather than in a defined way. In this

method, a group leader is responsible for collecting the entire group membership view

and every group member can host an entire or partial group member list. Messages

can be delivered around the group settings with a high probabilistic rate. Both of

the solutions can provide a reliable and ordered multicast delivery and also the group

membership service as well. For details about how to implement them and how they

can provide group services, please refer to [76] and [77].

2.2 Secure Group Communication

As a result of participation in collaborative group services in LANs, WANs, the Inter-

net or MANETs, network users are concerned more and more about security. Without

a security mechanism to safeguard communication data, group communication mes-

sages can be intercepted and fake group messages can be delivered around network

settings by attackers at anytime.

Attacks or threats can be launched at any layer of a protocol stack suite, such as

the Open System Interconnection Reference Model (OSI) or TCP/IP. In the lower

layers of MANETs, security mechanisms should protect communication nodes against

threats such as physical tampering, spread-spectrum techniques, frequency hopping,

12

and interleaving. At higher layers, attacks to group communications include pas-

sive eavesdropping, active message interception, message insertion, message replay,

and denial of service, which compromise Secure Group Communication (SGC) funda-

mental security properties such as confidentiality, integrity and authentication. This

thesis focuses mainly on security mechanisms deployed at the network layer to pro-

tect network or higher layers. Providing solutions to secure lower layers is outside the

scope of this thesis.

2.2.1 Security for Group Communication

A secure group communication system should provide security services for group

communication abstractions. These group activities range from group initialization

to group message delivery, group member joining/leaving, group organization, and

consistent viewing of group events. Several security mechanisms are provided to safe-

guard group communication. In general, there are three main categories, as listed

below:

Access control to the group

Access control is fundamental for secure group communication; it admits legal clients

and blocks illegal or malicious users based upon the group member admission police.

Actual research interests include how to admit a new group member and how to make

the decision to expel a client. Of interest as well is trust managements in which the

possession of the group key verifies that the node is trusted.

13

Group authentication

The counterpart for the admission of the new group member is how an existing group

member convinces outsiders of its specific group member status. A group signa-

ture mechanism makes the authentication work. Other proposals such as ID-based

authentication can be deployed as well. With the deployment of these methods,

impersonation or man-in-the-middle cannot comprise either the group membership

protocol or the group view update.

Group Key Agreement/Management schemes

The group key scheme plays a key role in the fundamental infrastructure of SGC to

satisfy confidentiality, integrity and authentication. In SGC, eavesdropping compro-

mises confidentiality; malicious actions such as insertion, deletion, and modification of

group messages damage integrity; man-in-the-middle attacks damage authentication.

With the support of other cryptographic mechanisms such as encryption, Message

Authentication Code (MAC), and digital signing, the group key could protect group

communication atomic against attacks and satisfy the security goals listed earlier.

In fact, many security solutions (such as secure routing protocols) are designed with

the assumption of the pre-deployment of a group key. Therefore, the group key

scheme works not only as one of the more important mechanisms, but also plays the

cornerstone role in SGC to ensure security for both group member collaborations and

group communication data transportation.

The focus of this thesis is to propose group key schemes for group communications

so that only current group members can hold the current group key. Specifically,

14

contributions are made to schemes which make the group key accessible only to cur-

rent group members and hence no other users can decrypt the message. Providing

solutions for group authentication or access control to the group is outside the scope

of this thesis.

2.2.2 Security Model

Group key schemes can be generated with or without threats of insider attackers.

For these two cases, corresponding solutions follow two models: the fortress secu-

rity model and the model against Byzantine failures (i.e., arbitrary, including mali-

cious). The former refers to the secure mechanism with assumptions that all group

members behave correctly and indeed, are trustful. The latter assumes that insider

nodes/members can be compromised / fail as well. Both of them demonstrate the re-

alities of GCSs. In general, most cryptographic designs such as Diffie-Hellman (DH),

TGDH etc., assume that the node possessing a valid secret key is trusted, which means

that insiders are trustful. This is an example of the fortress model. Meanwhile, in

some scenarios, nodes in the networks can be tampered/captured by malicious users

as well, which means that the inside member may be un-trustful. This would be an

example of Byzantine model.

Proposals using the fortress demonstrates efficiency. By contrast, with the Byzantine

model, in order to expel compromised inside nodes, solutions which escort group com-

munications safely require heavy communication overhead and demand more network

15

resources. So far, proposals presented for classical networks such as LANs or WANs

can achieve the security objective if the compromised members comprise no more than

1/3 of the group size. Otherwise, solutions will fail due to high traffic communication

volumes. MANETs characteristics demonstrate a lack of bandwidth. Furthermore,

links frequently corrupt, nodes sometimes crash and networks partition. In a word,

the resources are limited. So far, no successful solutions have been implemented for

MANETs. Therefore, in this thesis, the fortress model is focused upon and research

against Byzantine attacks will be studied in the future.

In the fortress security model, it is necessary to consider only outsider adversaries.

They can be divided into two types, active and passive. Passive outsider adver-

saries capture group communication data to launch eavesdropping attacks. Group

key schemes can be employed to protect against this attack. Active outsider ad-

versaries use malicious techniques which include injecting, modifying, delaying and

deleting group communication messages to break authentication and integrity. A

man-in-the-middle attack can be launched as well by outsider adversaries. The cor-

responding security technique is to sign the messages digitally with the public key

of the sender and then the receivers verify the signings [32]. A sequence number or

timestamp should be included as well to indicate the freshness of rekey messages.

Since these kinds of algorithms are well known and well developed, detailed imple-

mentation will not be described in this proposal.

This research cannot be deployed against attacks such as traffic analysis, Denial of

Service (DoS), Operation System (OS) attacks, and Byzantine attacks. To overcome

16

them, please refer to the corresponding solutions.

2.2.3 ID-based Authentication Used for Group Member Authorization

Before the introduction of my solutions, trust management between the group partic-

ipants or that between the existing group member and a new joining group member

should be discussed. An ID-based technique is one of the methods who can authorize

users which plan to join subsequent group sessions. It means that before a user sends

out join requests, it is necessary to apply for the authorization procedure first. After

the private key and the public key have been issued successfully, this user can send

out a join request. So, in the fortress model, group key management is our objective

and authentication can be provided by ID-based DH authentication. In detail, every

group member should be issued a public key / private key pair from Certification

Authority (CA) server via secure channel (eg. Physical Touch, Master Card, Token,

etc.). Notice that the CA server should not have to be available all the time. Af-

terwards, these nodes are legible to join any group. In order to participating any

group, it is simply a matter of sending out the request package including its public

ID signed by its RSA public key. One of the current group members (called sponsor)

can respond to the request and reply with its partial key to process the group member

admission (please refer to section 3.1.4 for details). Therefore, with the issued pub-

lic/private key pair, the node can associate and then finally participate in the group.

17

2.2.4 Secure Group Communication (SGC)

Secure Group Communication (SGC) refers to scenarios in which group members can

receive and send messages to others in such a way that outsiders are unable to obtain

any information even when they are able to intercept the messages [74]. Group mem-

bers are group application participants who send/receive group messages with other

members to fulfill collaborative tasks. Two communication patterns, one-to-many or

many-to-many, can be used to send/receive group messages. In the one-to-many type,

one group member sends messages and a number of members receive messages. By

contrast, in the many-to-many type, each group member can be the message sender

and receiver simultaneously. Centralized group communication assumes a one-to-

many format and contributory group communication, including DPGs, assumes the

many-to-many format.

2.2.5 Group Membership Changes

In group communications, the group member can join or leave the group at any time.

This feature of group communications is called the group dynamic.

In addition to one group member joining/leaving, the group dynamic also involves

another kind of behaviour, namely the bulk or bursty operation in which multiple

group members join and/or leave the group simultaneously [38], [44]. Therefore, the

group key management scheme should make the group key accessible only to current

18

group members for the following group membership changes [38], [44] (shown in Fig-

ures 2.1 - 2.4).

Member join: To take part in present and future group communications a user joins

1. Join Request

3. Permit Join + Partial Keys

2. Partial Keys

Figure 2.1: Group Membership Changes - Member Join Scenario

the group to become a legitimate group member. The join procedure is processed as

mutual authentication between the new node and the node representing the group to

admit the new one.

Member leave: During group communications, a group member leaves the group.

Once a leaving group member sends out the leaving request, a group member, which

may be a leader or an average user, will forward its leaving request to all other mem-

bers. After leaving and before rejoining, the member can no longer obtain (decrypt)

group communication messages. If the member is out of service, it is treated as leav-

ing via the heart-beat detection technique.

Group partition: In certain applications, a group may be divided into two or more

19

1. Leave Request

2. Partial Keys

Figure 2.2: Group Membership Changes - Member Leave Scenario

independent subgroups. Another scenario for group splitting is triggered by physical

network partitions. The group is then separated into multiple temporary subgroups.

Group merge: Two or more groups may fuse into a larger group in some applications.

Moreover, groups previously split due to a network partition may need to merge again

because of physical network restorations.

Note that the method for deciding and processing partition/merging operations is

determined by certain group applications and is not considered in this proposal. Fur-

thermore, whether a group member leaves the group or not is based upon the group

communication semantic which is outside the scope of this thesis. As well, the reasons

and mechanisms for expelling group members are outside the scope of this research.

Bursty Operation: Multiple group members join and multiple group members leave

the group simultaneously.

20

1. Partial Keys to
complete group
partition

1. Partial Keys to
complete group
partition

Figure 2.3: Group Membership Changes - Member Partition Scenario

2.2.6 Security Requirements for Group Key Management

In SGC, group members can join/leave at any time and the current group key should

be possessed only by current group members. Therefore, it is critical that the future

group member and the leaving group member not obtain the current group key. So,

when one or more members leave or join the group, the group key should be updated

so that just current group members comprehend it. This procedure is called rekeying.

Based upon the security properties defined in several systems [10], [38], [44] (shown

in Figure 2.5 - 2.9), a list of security requirements for group key management follows.

Group key secrecy/key independence: It must not be computationally feasible for a

passive adversary to discover any group key.

Forward secrecy : Previous group members who know contiguous subsets of old group

keys must not be able to discover subsequent group keys after they leave the group.

21

1. Partial Keys to
complete group
merge

1. Partial Keys to
complete group
merge

Figure 2.4: Group Membership Changes - Member Merge Scenario

Security Requirement for Group Key Scheme

Backward Secrecy Protection against CollusionKey Independence Forward Secrecy

Figure 2.5: Group Key Security Requirement Summary

Backward secrecy : Current group members who know a contiguous subset of current

group keys must not be able to discover preceding group keys.

Protection against collusion: No set of fraudulent users should be able to deduce the

current traffic encryption key, which means that nonmembers of the group must not

be able to collude and compromise the current group key.

There are two kinds of rekey strategies: individual rekey and periodical batch rekey.

Individual rekey : the rekey scheme is processed to update the group key for such

group membership requests as joining/leaving.

22

Malicious
user

Malicious
user

Malicious
user

Figure 2.6: Group Key Security Requirement - Key Indepedence

Periodic batch rekey : when a member requests to join or leave the group, rekey op-

erations corresponding to these joining or leaving requests are postponed rather than

processed immediately and requests are processed in a batch at the end of each rekey

interval so that group members who need to leave can stay longer and new group

members have to join later. The purpose is to accumulate more joining and leaving

requests so that these multiple requests can be processed in bulk.

The individual rekey strategy introduces inefficiency and out-of-sync problems [68],

especially for resource-limited networks. However, it can provide strict backward

secrecy and forward secrecy. An individual rekey strategy might be deployed most

appropriately for financial/military applications which require strict security.

Periodical batch rekeying leads to a vulnerability window [68] which is the period of

time starting with the joining or leaving request and ending at the completion of the

rekey interval. If the vulnerability window is too long, security can be compromised.

23

Leave Request

New group key

Malicious
user

Old group key

Figure 2.7: Group Key Security Requirement - Forward Secrecy

However, it can alleviate the out-of-sync problem and improve efficiency. Conse-

quently, periodic batch rekeying is a trade-off between the group key security and

efficiency. A periodical batch rekeying strategy is used in entertainment/education

applications which have security demands which are not so strict.

2.3 Components and Criteria of Group Key Schemes

Figure 2.10 shows three basic functional components of a group key scheme: registra-

tion, rekey processing and rekey transport.

A user sends the authorization request to the registration component which could

validate/verify the user. The registration component is responsible for processing au-

thorization requests sent from users. In general, a registration component of the group

key management scheme can authorize a user employing such techniques as Public

24

New group key

Join Request
Malicious

user

Old group key

Figure 2.8: Group Key Security Requirement - Backward Secrecy

Key Infrastructure (PKI), ID-based authentication [32], physical touch, master card,

token, etc. After the registration component sends secret keys to the authorized user,

the user can use these secret keys to obtain the group key. Notice that the registration

component is an offline third-party CA. The manner in which the user is authorized

is outside the scope of this proposal and might be considered as a subject for future

research.

After being authorized, the user is capable of obtaining a group key as long as s/he

participates in a group session. The method for delivering the rekey message (par-

tial keys) to the new group member is called rekey transport and the technique

for gaining/updating the group key is called rekey processing. The rekey transport

component is utilized to deliver rekey messages around the network via reliable and

authenticated unicast or multicast services. The rekey processing component is de-

veloped to manage/update the group key. This component enables join requests sent

25

Malicious
user

Figure 2.9: Group Key Security Requirement - Against Collusion

from the authorized user and leave requests sent from the group member to be pro-

cessed. More importantly, by executing the rekey processing scheme (component),

every group member can agree on a new identical group key.

As shown in Figure 2.10, generally, the rekey processing component includes two

generic components: group key establishment and group key management schemes.

The mechanism to generate a group key is called the group key establishment scheme.

The contributory group key establishment scheme has been called the group key

agreement scheme as well [32]. Centralized group key establishment schemes can be

called group key distribution schemes [32]. In contributory group key establishment

schemes, distributed algorithms forward partial keys over the network. Other group

members calculate the group key based upon these partial keys. The method for

updating a group key is called the group key management scheme [32], [44] which is

utilized when a member leaves or joins the group.

26

The rekey processing and rekey transport components are installed on the same net-

work service entity/node. However, they do not have to be installed on the same

entity/node as the registration component. In general, the registration component

is deployed on the Group Control (GC) which is off-line. The rekey processing and

rekey transport components are installed on the Key Server (KS). In cases where

large numbers of users are required for authorization and where the registration rate

is high, distributed multiple GCs are employed to distribute the workload for the

authorizing user requests. This mechanism improves the scalability of registration

services. Figure 2.11 and Figure 2.12 delineate registration services for the central-

ized and contributory group key schemes, respectively.

Group Key Scheme

Registration Rekey Processing Rekey Transport

Group Key
Establishment

Group Key
Management

ContributoryCentralizedContributoryCentralized

Distributed
Algorithms to
deliver partial

keys

Figure 2.10: Group Key Category

27

Group Control
(registration service)

Group Control
(registration

service)

1

2

6

5

Key Server

(rekey and
delivery)

Group Control
(registration

service)

3 4

Group Control

(registration service)

Figure 2.11: Centralized Group Key

2.3.1 Criteria to Evaluate Group Key Management

Efficient group key management schemes should take into consideration not only secu-

rity but also performance requirements. Previous research [44] has proposed a number

of criteria useful for validating and evaluating group key management schemes. In ad-

dition to the security property introduced earlier to safeguard group communication

messages, the following performance-relevant requirements (shown in Figure 2.13) are

provided as well for comparing different group key management schemes.

Service availability/fault tolerance: the fault of a single entity should not prevent the

operation of the key management scheme.

Computational cost : to update the group key some cryptographic schemes such as en-

cryption/decryption, Diffie-Hellman key exchange, or one-way hash functions should

be used to let all group members generate the unique, new group key. It is desirable

that the rekey computation processing cost is low.

28

Group Control
(registration service)

Group Control
(registration

service)

1

2

6

5
Group Control

(registration
service)

3 4

Resource-
Limited
Networks

Group Control

(registration service)

Figure 2.12: Contributory Group Key

Communication overhead : to update the group key, the rekey messages should be

delivered around the network so that other group members can use them to update

their group keys. It is desirable that the bandwidth utilized for rekey messages be

small.

Storage requirement : the number of keys stored by group members and the key server

should be small.

Criteria for Group Key Scheme

Failure Tolerance Computational cost Communication overhead Storage Requirement

Figure 2.13: Group Key Performance Criteria

29

2.4 Anticipated Significance of Contributions

This research provides an original theoretical contribution to the study of group key

schemes for DPGs and encryption algorithms. The research is concerned with group

key management which has been studied for a long while.

Firstly, this research focusses on the performance-relevant enhancements to make

Diffie-Hellman-based contributory group key management suitable for resource-limited

networks. Issues like fault-tolerance, computational cost, communication overhead

and memory consumption are addressed. In particular, the focus of this research is

on the efficiency of the contributory group key generation scheme, the contributory

group key management scheme and a hybrid architecture, all of which are critical for

these group communication applications in resource-limited networks.

Secondly, this research provides insights into practical problems as well including

the group member join/leave rate which affects the performance of the group key

schemes significantly. The proposed approaches improve the tolerance threshold for

the join/leave rate in resource-limited networks by increasing performance by 50 per-

cent.

Thirdly, most experiments designed in this research to test the performance of the

proposed approaches are based upon a real data set collected on MBone [1, 2], a pop-

ular and practical group communication platform on the Internet enjoyed by various

users. The group member behaviour for member join, member leave and the duration

time of a member attending the group session is recorded within real time executing

30

environments. The rest of the experiments are achieved via platform Network Simu-

lation 2 (NS2), an extensively used simulation tool.

Chapter 3

Background and Literature Survey

In the following discussion, cryptographic primitives are introduced in section 3.1.

Related works for group key establishment and management schemes are described

in section 3.2 - 3.4. Previous works related to FEA-M are provided in section 3.5.

3.1 Cryptographic Techniques

3.1.1 Two-Party Diffie-Hellman Key Exchange Scheme

Party A and party B launch the two-party Diffie-Hellman key exchange protocol to

generate a common secret key, k, shared by both of them [32]. Assume that p is a

large prime and g is a primitive element of GF(p). What’s more, the integer pair,

(p, g) is known by both parties in advance. What follows are the steps required to

accomplish the Diffie-Hellman protocol.

Step 1: Party A and B generate random integers, a and b respectively to satisfy

0 < a < p− 1 and 0 < b < p− 1.

Step 2: Party A and B calculate and exchange the result of ga (mod p) and gb (

mod p) with each other.

31

32

Step 3: Party A calculates the secret key k = (gb)a (mod p).

party B calculates the secret key k = (ga)b (mod p).

Finally, secret key k is shared by party A and party B.

3.1.2 One-Way Hash Function

One-way function h() should satisfy four requirements [28], [32]:

(1) The function h() is known in advance by public users including not only the le-

gitimate participants but also the malicious users.

(2) For an arbitrary length message M, it is computationally efficient to process h(M).

(3) It is not computationally feasible for the malicious user to deduce the input M if

s/he can obtain the output of the one-way hash function, h(M).

(4) Function h() provides second pre-image collusion resistance. That is, given a ran-

dom value x, it is not computationally feasible to find x′ 6= x such that h [x] = h [x′].

3.1.3 Hash Chain

A hash chain is a set of sequenced hash values with a linear derivative relationship

among multiple one-way hash functions [32].

The hash chain formula is Hj(G) = H(Hj−1(G)) where H is a one-way hash function

and j is an integer. Hj(G) means using hash function H() j times on a message G.

Therefore, if Hi(G) is known, we can derive Hj(G) where i < j.

However, given Hj(G), it is not computationally feasible to find Hi(G) where i < j

because of the property of the hash function.

33

3.1.4 ID-based Authentication

ID-based authentication is described below which includes three phases: set-up, key

generation and key agreement.

1. Set-up

According to the RSA algorithm [36], Trusted Center (TC) generates and pub-

lishes (n, g, e) but keeps (p, q, d) secret.

2. Key generation

For an authorized user A whose identification information is IDa, TC computes

sa = ID−da (mod n).

For an authorized user B whose identification information is IDb, TC computes

sb = ID−db (mod n)

Then TC issues (n, g, e, IDa, sa) to user A and issues (n, g, e, IDb, sb) to user B.

3. Key Agreement

Step 1: A generates the secret random RA, A calculates

TA = gRa+IDbsa(modn) (3.1)

B generates the secret random RB. B calculates

TB = gRb+IDasb(modn) (3.2)

Step 2: B sends A: TB

Step 3: A computes

34

KAB = ((g−IDaTB)eIDb)
RA = geRARB (3.3)

Step 4: A sends B: TA

Step 5: B computes

KAB = ((g−IDbTA)eIDa)
RB = geRARB (3.4)

3.2 Contributory Group Key Establishment and Management Schemes

Several group key schemes have been proposed already. They can be classified broadly

into two categories, namely, centralized [42], [49], [65], [68], [69] and contributory [3],

[4], [5], [6], [7], [10], [22], [24], [26], [27], [43], [54], [55], [56], [67]. By extending the

integer Diffie-Hellman key exchange (DH), several contributory group key agreements

have been proposed which include Ingemarsson et al. for teleconferencing (ING)

[22], Burmester-Desmedt (BD) [10], Skinny TRee (STR) [26], [56], Group Diffie-

Hellman (GDH) [5], [6], [55], Octopus [7], Tree-based Group Diffie-Hellman (TGDH)

[25], Distributed Logical Key Hierarchy (D-LKH), and Distributed One-way hash

Function Tree (D-OFT). They are introduced in this section. Before the execution

of the following group key agreements, every group member Mi should agree on the

generator, α, an integer. Each group member, Mi, generates a session random integer,

namely, ri, and calculates the blinded key αri , in advance.

35

3.2.1 Burmester-Desmedt (BD)

The BD protocol is one of the earlier group key schemes which extend DH scheme.

The group key can be calculated in three rounds.

Table 3.1: Burmester-Desmedt (BD) Protocol

Protocol 1 - Group Key Establishement: BD

Round 1 : Broadcast the partial keys
Every group member, Mi, broadcasts: Zi = αri

Round 2 : Calculate key material
Every group member, Mi, computes Xi = (Z(i+1) mod n/Z(i−1) mod n)ri

Round 3 : Compute the group key
Every group member reaches the group key:

k = Znri
i−1 •Xn−1

i •Xn−2
i+1 • • • •Xi−2 mod p

= αN1N2+N2N3+···+NnN1 mod p

However, when a new group member joins or when a group member leaves, most

of the group members need to refresh the random session rn and follow the steps

mentioned above one by one. Therefore, this scheme requires high resources.

3.2.2 Octopus Protocol

The Octopus protocol is one of the earlier tree-based contributory group key agree-

ments organized with virtual hierarchy. In this scheme, all group members are divided

36

into four subgroups, namely, A, B, C and D. In every sub-group, there is one group

member leader available, namely MA, MB, MC or MD, respectively. The role of every

group leader is to collect the contributions of every sub-group member and calcu-

late the intermediate value, RA (or RB, RC , RD,). Then, the four group leaders

launch the DH scheme to compute group key G and send G back to every sub-group

member. Specifically, the group is split and the intermediate values are computed

as below (ri is the contribution of group member Mi): Subgroup A includes group

members M1 · · ·Mn/4; the leader of sub group A, calculates RA = Π1<i<n/4ri; Sub-

group B includes group members Mn/4+1 ···Mn/2; the leader of sub group B, calculates

RB = Πn/4+1<i<n/2ri Subgroup C includes group members Mn/2+1 ·· ·M3n/4; the leader

of sub group C, calculates RC = Πn/2+1<i<3n/4ri Subgroup D includes group members

M3n/4+1 · · · Mn; the leader of sub group D, calculates RD = Π3n/4+1<i<nri Notice

that the sub-group leader, for example, A, should has a secure channel between every

other subgroup member. Via these channels, A can obtain r1, . . . , rn/4 one by one.

The same applies to B, C, or D. After the completion of the procedures mentioned

earlier, group key G can be computed as below:

1st round: MA and MB exchange αSA and αSB .Both of them compute SAB = αSASB

MC and MD exchange αSC and αSD . Both of them compute SCD= αSCSD

2nd round: MA and MC exchange αSAB and αSCD . Both of them compute G =

αSABSCD .

MB and MD exchange αSAB and αSCD Both of these compute G = αSABSCD The sub

37

group leader, for example, A, sends every sub group member Mi the partial key ma-

terial Gα−ri . Every group member can calculate group key G. The same applies to

B, C, or D.

3.2.3 Group Diffie-Hellman (GDH)

For a group key establishment scheme, two Group Diffie-Hellman key agreements

[5], [6] GDH.2 and GDH.3, are proposed to generate the group key based upon an

extension of the Diffie-Hellman two-party key exchange scheme. In this thesis, only

the latter is considered, since it is more efficient than GDH.2.

When a new group member, Mn+1 joins, group member Mn refreshes its random

session rn with rn’. Then Mn calculates n−1 partial keys, α(
∏ n−1
k=1 rk)rn

′
and forwards the

output to new member Mn+1 who works as the group controller in this round. The rest

is the same as that for round n and n+ 1 of GDH.3. When group member Mi leaves,

the group controller, Mc, removes the partial keys which include the contribution of

ri, refreshes its random session rc’ and broadcasts the updated n− 1 partial keys. All

group members can update their group keys based upon the broadcast messages. For

details please refer to Ateniese Steiner and Tsudik, [5], [6].

3.2.4 Tree-based Group Diffie-Hellman (TGDH)

The TGDH group key management scheme [25] integrates a binary tree structure

with the intermediate sub-group key calculation formula of the hypercube & Octopus

protocol [7]. TGDH assumes that all group members are sorted in a logical tree.

In the following key tree, the sponsor selection policy and the group key update

38

algorithm are introduced. A binary tree T is a key tree in which every node can be

denoted as < h, i > where h is the height (level) of the node and i is the index of the

node at level h. Thus, every node is identified uniquely. There are two kinds of nodes

in T, the leaf node and the intermediate node. Each leaf node in the tree represents a

group member Mi. The intermediate node has two children. It represents a sub-group

which includes group members who are represented by all of this intermediate node’s

offspring leaf nodes. Each node, in the binary tree, has two keys, node key, K and

blinded key, BK. The node key associated with node (l, v) is K<l,v> and its blinded

key BK<l, v > = αK<l,v> . Each leaf node’s node key is a random integer ri, which

is generated by group member Mi. The intermediate node’s node key is treated as

the sub-group key. Without loss of generality, the root node’s node key is called the

group key. For each internal node < l, v >, its associated node key k<l,v> is derived

from the keys of its two children, < l+ 1, 2v > and < l + 1, 2v + 1 >, in the following

manner:

The group key establishment scheme for TGDH is simple. The group members in the

key tree, who are represented by the leaf nodes, exchange their blinded keys with their

sibling nodes to perform the Diffie-Hellman key exchange scheme. This procedure is

repeated at every level of the key tree until the root of the key tree is generated at

round log2n where n is the group size.

k<l,v> = BK
k<l+1,2v>

<l+1,2v+1> = BK<l+1,2v>
k<l+1,2v+1> = αk<l+1,2v+1>k<l+1,2v> (3.5)

39

Table 3.2: GDH.3 Protocol

Protocol 2 - Group Key Establishment: GDH.3

Round i (1 ≤ i ≤ n− 2): collect all contributions from every group member:
Mi sends Mi+1:α

(
∏
rk|k∈[1,i])

Round n-1 : Broadcast/multicast the partial key
Mn−1 broadcasts M1, M2. . . Mn−2: α

(
∏
rk|k∈[1,n−1])

Round n: Every group member factors out its own contribution ri by using
the inverse r−1i and sends the result to the last group member Mn:

M1, M2. . . Mn−1 sends Mn: α(
∏
rk|k∈[1,n−1]∧k 6=i)

Round n+1 : Mn raises the messages it received with the power of rn and then
broadcasts all results
Mn works as the group controller and broadcasts Mi: {α(

∏
rk|k∈[1,n]∧k 6=i)|i ∈

[1, n− 1]}

Every member Mi picks up the corresponding partial key and raises its power
with its random session ri. In the end, every member reaches the same group
key, α(

∏
n
k=1rk).

40

1, 1

0, 0

2, 1

1, 0

2, 0

1, 0

2, 32, 2

M3

2, 12, 0

M1M1 M2 M2 M4

M4 Joins

Shallowest
leftmost

0, 0

1, 1

M3

Figure 3.1: Sponsor for TGDH

When a group member joins/leaves, the TGDH protocol should select the sponsor

node (in short, sponsor) which is in charge of the group key updates. When one

group member joins the group, the shallowest leftmost leaf node in the key tree

should be selected as the sponsor which will work as the sibling for the new group

member. When one group member leaves, the sponsor should be the shallowest

leftmost leaf node of the sub-tree rooted as the leaving member’s sibling node. Then,

all group members block except the sponsor which updates its own random secret,

calculates the new keys on its key path based upon the new secret, and furthermore,

broadcasts/multicasts the updated blinded keys on its key path. Finally, other group

members can calculate the new group key based upon the updated blinded keys. For

example, in Figure 3.1, M4 joins. M3 is selected as the sponsor. M3 refreshes its

random secret K<2,3> (K<2,3> is equal to r3) and updates the node keys, { K<1,1>,

K<0,0>} as well as the blinded keys, {BK<2,3>, BK<1,1>} on its key path. Finally,

updated blinded keys {BK<2,3>, BK<1,1>} are broadcast/multicast. M1,M2 and M3

41

are able to calculate the new group key K<0,0> based upon them.

3.2.5 Skinny TRee (STR)

As one of the earlier tree-based group key management schemes, Skinny TRee (STR)

[56] is promoted by Yim, Perrig and Tsudik [26] to handle membership events. This

scheme utilizes an unbalanced key tree in which every leaf node represents a group

member. All intermediate nodes play a management role. Every group member

Mi should generate a random secret ri and calculate its leaf node’s blinded key

BK<i,1> = αri . In the first round, every member broadcasts BK<i,1> = αri where

1 ≤ i ≤ n and n is the group size. In the kth round, intermediate values BK<k+1,0> =

BK
Kk,1
<k,0> = BKrk

<k,0> where BK<2,1> = αr1r2 will be broadcast to other members so that

exponentiations can be raised. After n rounds, every member can reach the group key:

K<n,0> = αrnα
rn−1...

α(r1r2)

(3.6)

To handle group members joining, STR adds a new leaf node to represent the new

member. This new leaf node is treated as the current root’s sibling and a new root

node is created which works as the former root and the new member’s parent. The

group member representing with the leaf node right below the new leaf node is selected

as the sponsor. When a group member leaves, the leaf node representing the leaving

group member and the corresponding sibling node are deleted. The group member

represented by the leaf node right below the leaving member’s leaf node is treated as

42

the sponsor. What the sponsor performs is the same for both the joining and leaving

protocols. The sponsor refreshes its random secret and updates all node keys and

blinded keys associated with the nodes above it. Finally, the updated blinded keys

are multicast and every other group member can calculate the new group key. STR

shows computational and communication efficiency for group membership additions

but not always for group membership deletions. STR reduces the number of rounds

needed to update the group key as compared with TGDH.

3.2.6 Distributed One-way hash Function Tree (D-OFT)

Like TGDH, Distributed One-Way hash function Tree (D-OFT) utilizes the binary

key tree to support a group generation and management. Every leaf represents a

group member and intermediate nodes work as the key management role. Every

node in the key tree hosts the node key and a blind key. The blind key is calculated

as below:

KB = g(K) (3.7)

where K: node key; KB : blinded key; g: one way hash function;

The leaf node’s key is generated by the group member and the intermediate node key

is computed according to the formula below:

Ki = f(g(Kleft child(i), Kright child(i))) (3.8)

43

where f: mix function to mix together the two parameters.

Like TGDH, the group key is the root node’s node key. To calculate the group key,

every leaf member should know all node keys on its key path and all blinded keys on

its sibling key path. Following the formula mentioned earlier, the group key can be

computed by every group member. Whenever group members join/leave, new contri-

butions of the changing member’s sibling should be refreshed and the corresponding

node key and blinded key on its key path should be updated. This solution assumes a

secure channel between the group members in advance so that the updated node key

and blinded key can be encrypted and sent to its counterpart via the secure channel.

Compared with TGDH, this method is computationally efficient since the one-way

hash function rather than the exponential operation is used to calculate the blinded

key and node key (including the group key). However, assuming the pre-deployed

secure channel between group members is a limit for the installation of this proposal.

3.2.7 Distributed Logical Key Hierarchy (D-LKH)

Distributed Logical Key Hierarchy (D-LKH) is proposed without the supporting of a

centralized server. In this scheme, every group member plays a symmetric role. This

solution utilizes the logical tree which has left tree L and right tree R. Both L and R

include a set of group members. Every group member in L agrees on a shared key KL

, and those in R, a shared key KR. Member ML and MR work as the group leaders

of L and R respectively. To share a mutual key between groups L and R, the steps

described below are required:

44

1. ML, the group leader of L, chooses a new key KLR and sends it to the group

leader of R, MR, via a secure channel.

2. ML encrypts KLR with key KL and multicasts the ciphertext to all the group

members in L. MR encrypts KLR with key KR and multicasts the ciphertext to all

the group members in R.

3. All members within L and R receive the ciphertext and decrypt the group key,

KLR. As with D-OFT, this solution assumes a secure channel between the group

members in advance.

3.3 Distributed Algorithm to Forward Partial Keys

Several distributed algorithms have been proposed to deliver partial keys for previous

contributory group key establishment schemes.

3.3.1 Connected Dominating Set for GDH (CDS-GDH)

In GDH.2 and GDH.3, communication costs between nodes are not considered and

group members are assumed to be sorted before the launching of the group key

establishment schemes. Li, Wang and Frieder [62] propose a Connected Dominating

Set (CDS) to divide the group into subgroups. They recommend a hierarchical key

architecture where every subgroup generates its sub-group key and all dominators

share another group key. To relay intermediate GDH messages over dominators, a

spanning tree is constructed and a post-order walking algorithm is deployed. The

post-order walking algorithm can satisfy GDH which assumes a path which covers

45

all group members. The number of rounds for the post-order walking algorithm on a

tree is 2n.

3.3.2 Shortest Path for GDH (SP-GDH)

Anton and Duarte [4] find that, in GDH.2 and GDH.3, predefined node sequences

may not be the best choice for network nodes with geographic placements. They

propose a method to generate the node sequence with the assistance of node location

information. The path’s end point broadcasts a request to search for the next node.

The first responding node is added to the end of the path. This procedure is repeated

until all group members are involved in the path. This method can be treated as the

Shortest Path problem, with the number of rounds, O (n).

3.4 Centralized Group Key Schemes

Several centralized group key schemes have been proposed to achieve performance

efficiency. Since this thesis proposal focusses mainly on the contributory group key

schemes which are utilized in resource-limited networks, this sub-section gives a brief

review of some key tree-based centralized schemes which are relevant to the proposed

hybrid architecture. Logical Key Hierarchy (LKH) [65] uses a Key Distribution Center

(KDC can be viewed as a key server or group controller) to maintain a key tree, with

which individual keys and auxiliary keys are associated. The KDC establishes a secure

channel between every group member and itself via an individual key. Intermediate

auxiliary keys which are associated with the intermediate nodes in the key tree can

46

be forwarded to every group member after being encrypted with the individual key.

When the membership updates, new auxiliary and new group keys are generated by

the KDC and they are encrypted with the individual key known by a group member

and the KDC. The KDC forwards these ciphertexts to corresponding group members

one by one. In turn, every group member can decrypt them using the individual key

it owns. The rekey messages will contain at most 2log2n keys.

Efficient Large-Group Key [42] (ELK) uses a hierarchical key tree as well. This novel

and sophisticated agreement is applicable to large groups, refreshing its key tree in

periodic intervals for the joining group members.

Keygem [68], [69] follows a periodic batch rekey strategy, in which all members should

have their time [68] synchronized and agree on a rekey period. Furthermore, they use

a marking algorithm to handle the J Join /L Leave request (where J members join

and L members leave).

3.5 FEA-M and Improved Variants

Securing real-time multimedia data is a challenging task since the size of the data

is usually very large and the data needs to be processed in a short time interval.

Standard cryptographic algorithms will usually result in a large overhead, rendering

them inefficient.

Yi, Tan, Siew, and Syed [70] have proposed a novel algorithm called Fast Encryption

Algorithm for Multimedia (FEA-M) which requires only 1.5 XOR operations to en-

crypt one bit of plaintext. This is significantly less compared to other encryptions

47

such as Rijndael, Crypton, Twofish, Cast256 and Serpent [32], [70], [28]. FEA-M is

based upon the Boolean matrix theory which involves matrix addition and multiplica-

tion over the finite field GF(2)= 0, 1. FEA-M’s security is based upon the complexity

of solving non-linear equation groups and variable linear equation groups. To protect

the key material against both passive and active attacks, an ID-based key agreement

is utilized to secure FEA-M’s key exchanges [69].

Mihaljevic and Kohno [33], [34] analyze FEA-M’s security and find it is not secure

enough when the first plaintext blocks are all 0s. Furthermore, Mihaljevic indicates

that FEA-M cannot work if one ciphertext package is lost during transmission. He

proposes an improvement to counter this vulnerability [35].

3.5.1 FEA-M and the Improved Variants

FEA-M uses an ID-based Diffie-Hellman key agreement protocol to generate a com-

mon secret key, k, an integer, between the sender and the receiver [69]. Based upon

the value of k, FEA-M generates a common key matrix K and a common initial

matrix V0 which are binary matrices of order n. The details of the algorithm for

generating K and V0 have been published previously [69], [70].

The plaintext message is divided into a series of blocks, P1, P2. . .P r, with the same

length, n2, where n is 64 and r is an integer [70]. If the length of the last block

is less than n2, it is padded with 0s to make its length n2. Each plaintext matrix,

Pi(1 ≤ i ≤ r), is encrypted into a ciphertext matrix Ci and each corresponding

ciphertext matrix Ci is decrypted into a plaintext matrix Pi according to formulas

48

below:

Ci = K • (Pi + Ci−1) •Ki + Pi−1 (3.9)

Pi = K−1 • (Ci + Pi−1) •K−i + Ci−1 (3.10)

P0 = C0 = V0 (3.11)

The vulnerability of FEA-M has been identified and improvements have been pro-

posed. Mihaljevic and Kohno [33], [34] point out that the real uncertainty about the

secret key of FEA-M is undesirably smaller than expected since the effective secret

key size, under realistic known and chosen plaintext attacks, is much smaller than the

nominal one. It occurs while the first set of blocks is all 0s. They conclude that when

the key is a 64*64 matrix, the nominal secret key size is 4096 bits but the effective

secret key size is only 134 bits.

Furthermore, Mihaljevic [35] indicates that if one ciphertext block is lost during trans-

mission, subsequent ciphertext blocks cannot be decrypted since they depend upon

former ciphertext blocks. To overcome this weakness, he proposes a new encryption

algorithm, which is described by the formulas below:

Ci = K • (Pi +K • V •Ki) •Ki+n +K • V •Ki (3.12)

Pi = K−1 • (Ci +K • V •Ki) •K−(i+n) +K • V •Ki (3.13)

49

Therefore, according to Mihaljevic’s improvement [35], if Ci is a lost block, no further

impact on subsequent blocks occurs.

Chapter 4

Contributions

4.1 Overview and Assumptions of Contributions

Group Key Schemes in Resource-
Limited Networks

Contributory Group
Key Schemes

Hybrid
Architecture

TGDH-H

Encryption

(1) (3) (5)

TGDH+
FEA-M

Overview

TGDH-
ASAP

(2)

Distributed
Algorithms

(4)

M2

Figure 4.1: Outline of Contributions

4.1.1 Overview

Group communication systems demand efficient and fault-tolerant group key schemes

to secure the services they provide. Several group members, for example, cooperate

with each other to achieve a rescue task in malicious environments such as battle-

fields. This group comprises some low-end mobile clients and a few high-end clients

50

51

as well. We call the former the node and the latter the server. They are able to set

up and enable the group communication service via deploying Liu’s routing protocol

[78] to enable the MANET. The security solution proposed in this thesis is the group

key scheme. Therefore, a group key should be refreshed to guarantee that only the

insider holds the group key. Every group member may face such scenarios: 1) The

group key should be established at a certain time. 2) During the group session, new

group members may join and some members may leave the group at anytime. 3)

The group can be portitioned or sub-groups can merge together again. Group key

schemes should be proposed to satisfy each sub-group. 4) The key server cannot

always be on-line because of failure or battery depletion. Therefore, methods should

be proposed to establish/manage the group key schemes to satisfy the requirements

for the scenario mentioned above.

In Figure 4.1, an overview is presented of the five contributions of this thesis to satisfy

the requirements listed above.

The first contribution is two efficient individual group key management schemes,

namely, Tree-based Group Diffie-Hellman with one-way Hash function (TGDH-H)

and Tree-based Group Diffie-Hellman Plus (TGDH+), which are suitable for scenar-

ios with a low rate of group member join/leave requests.

The second contribution is the periodic group rekey scheme, TGDH Amortized Sign-

ing Amortized Path (TGDH-ASAP), which satisfy scenario with a high rate for group

member join/leave.

52

The third contribution is maximum matching algorithms (M2) which are used to sup-

port the partial key delivery for group key establishment scheme.

The fourth contribution is a hybrid group key management architecture which ac-

commodates a centralized and contributory group key scheme. This solution can be

deployed for cases in which the key server is switching from online to offline.

The fifth contribution is the improved FEA-M encryption algorithm which can be used

to encrypt group messages, especially for multimedia data, while using the group key.

4.1.2 Assumptions

Support of Group Communication System (GCS)

Our first assumption is that the group key schemes (transport component) are devel-

oped with the support of an underlying GCS [3] [29] which are achieved via reliable

and ordered multicasts and unicasts. To achieve this task, the certain services are

required:

Every group member should be notified with each group membership change. As

with previous GCSs [3], [18], [49], [51], the group membership update event is treated

as the view. This research requires that group members should be able to observe the

same set of messages between two sequential group membership events. Furthermore,

the message order for the sender’s request must be preserved. We say that the Virtual

Synchrony service [18] is achieved if both of them are provided.

After receiving all necessary rekey messages, every group member can re-calculate

the new group key. In practice, this requirement needs the Virtual Synchrony service

53

as well.

In a word, this proposal assumes that the data transport of the GCS should be re-

liable and that the message delivery should be ordered. This can be achieved via

reliable multicast protocols [80]. In fact, several GCSs have been deployed already.

For example, in Secure Spread [3], while the group membership change happens, the

GCS robust algorithm informs the application that a new view should be installed.

The application, in return, sends the ACK following the set of old view messages.

After this step, the application is blocked until the new view is forwarded. Since

this system satisfies the Sending View Delivery property which requires messages to

be forwarded in the same view, the receiver can share the same set of views as the

sender. Therefore, in the Secure Spread system, Virtual Synchrony semantics can be

preserved by providing a reliable and ordered guarantee within a view. The Secure

Spread system has proven to be resilient to any finite sequence of events including

cascading ones. Furthermore, Secure Spread is robust enough to handle process crash

events. For details about the system design and algorithm implementations please

refer to Ateniese, Steiner and Tsudik New multiparty authentication services and key

agreement protocols [3].

Several previous popular group key schemes such as TGDH [25], STR [26], and Queue-

Batch [41] assume the availability of GCSs.

54

Authentication and Certification

In the purpose of this thesis certification is assumed to have been deployed/installed

for every group member/node in advance since this technology has been mature for

quite some time. Sample solution can be Computer Kerb, X.509, ID-based authenti-

cation, etc. In this thesis, I describe ID-based authentication as an example in section

3.1.4. Menezes, Oorschot and Varstone have provided other solutions [32].

In this thesis, Partial keys are signed with RSA algorithms for multicast or hashed

with the MAC method for unicast before forwarding to other group members. For

details, please refer to the Modified Signature Amortization Information Dispersal

Algorithm (M-SAIDA) in Algorithm 2 (Table 4.4).

Performance requirement

As with other popular software such as Unix, Linux, or Windows, it is better to be

aware of the clients minimum requirements in terms of the device’s system demands

with regard to processor and memory capability. The proposed group key schemes

are not applied to devices with lower-end resources. For details, please refer to the

chapter 5 performance assessments.

4.2 Contribution # 1: Efficient Individual Rekeying Schemes

Individual rekey schemes are critical for group communication with strict security

requirements in which the group key should be refreshed for every group membership

change. In this part, two new individual rekey proposals are demonstrated which are

55

not only efficient but cannot compromise any security requirements.

4.2.1 Overview of the First Contribution

The individual rekey strategy provides strict backward secrecy and forward secrecy.

Therefore, the individual rekey strategy can be deployed in financial/military appli-

cations which require strict security services.

Overview

In this section, two efficient individual group key management schemes are proposed.

They both are enhancements of the TGDH group key management schemes which

both include join/leave/merge/partition protocols. The key ideas in the proposal are

listed below.

TGDH-H presents a number of extensions for TGDH by incorporating TGDH and an

one-way hash function. To improve the efficiency of TGDH, TGDH-H updates the

group key via a one-way hash function (Hash) for joining group members and post-

pones the DH-based key updates until group members leave. Furthermore, when a

group member leaves, TGDH-H proposes two more sophisticated techniques, namely,

moving the child key tree and the dominating algorithm. The former is a method

for dragging the child key tree from one position to another. The latter lets every

group member be aware of which member is responsible for updating which over-

lapped intermediate nodes in the key tree. Both of these techniques can lessen the

computational cost and reduce communication overhead.

To enhance the efficiency of TGDH-H, TGDH+ is proposed. Unlike TGDH-H which

56

updates all node keys and blinded keys associated within all key paths when a group

member leaves, TGDH+ simply updates these node keys and blinded keys in the

child key tree. This method reduces the number of exponential operations from O(n)

to O(m) where n is the size of the total group, m is the size of the child key tree, and

m < n.

Notice that the deployment of a one-way hash function may introduce a vulnerability

in which an outsider with an illegally obtained group key can deduce the following

group key until a group member leaves. Although this method introduces this small

vulnerability contrary to strict security, the trade-off is worthy it because of significant

performance improvements.

Concepts and notion

Before describing the proposal, some background concepts will be introduced [25].

Key path: A path starting at the leaf node hosted by a group member, e.g. Mi, and

ending at the key tree’s root. The key path is named KP i. Mi hosts all node keys on

KP i, namely, KEY ∗i .

Sibling path: Sibling nodes corresponding with nodes on group member Mi’s key-

path constitute Mi’s sibling path. Mi hosts all blinded keys on its sibling path, namely,

BKEY ∗i .

Key sub-path: a sub-path starting at any node, Nx and ending at any other node,

Ny on a key path is called a key sub-path, namely, KSP i,xy. All node keys on key

sub-path are called KEY ∗i , x, y.

57

|| denotes the concatenation.

Notice that, with the support of group communication systems, every group member

can be aware of the same set of join/leave requests. Hence, utilizing the same strategy

and being aware of the same change of membership, every group member can get the

same key tree structure. Additionally, as with TGDH, every group member is required

to maintain the node keys associated with the nodes on its key path and the blinded

keys associated with the nodes on its sibling key path.

4.2.2 TGDH-H

Hash

1, 1

0, 0

2, 1

1, 0

M1 M2

2, 0

M3

1, 1

0, 0

1, 0

2, 3

M4 M3

2, 22, 1

M1 M2

2, 0

G

Same

DH H(G)

1, 1

0, 0

1, 0

2, 3

M3

2, 22, 1

M1 M2

2, 0

H(H(G))

3, 1

M4 M5

3, 0

M4 Joins M5 Joins
Tmain

Tchild

{M1..Mi,}

{Mi+1… …Mi+j,}

{MX}

{MY}

Insertion

Point for

Tmain

Insertion

Point for

Tchild

Insertion

Point for

Tmain

Tchild=EMPTY

Tchild

Insertion Point for Tchild Insertion Point for Tchild

Tchild

(A) Join Protocol (B) Original Tree (C) M 4 Join (D) M 5 Join

Figure 4.2: TGDH-H: Key Tree Updates for Group Members Joining

In this sub-section, an efficient group key management scheme (TGDH-H) is pro-

posed. Utilizing a hash function to handle group member joining has been suggested

by some centralized group key management schemes such as ELK [42] and LKH+

[61]. To date, contributory schemes have not adopted this technique. In the following

section, four basic protocols for TGDH-H — join, leave, merge and partition — are

described.

58

Join Protocol

1. Method to update the Key Tree Structure

The key tree shown in Figure 4.2 (a), includes two parts: the main key tree, TMain

and a child key tree, Tchild. At the very beginning of the group key scheme, both

of them are empty which means that there are no nodes available. Every key tree

should have its insertion point, which is the shallowest leftmost node in the key tree.

For every group membership change, the rules below should be followed: 1) When a

group member leaves or the group partitions/merges, Tchild will merge into the key

tree, Tmain, and then Tchild is assigned as EMPTY. 2) When a group member joins,

the method of inserting it into the key tree should be based upon whether Tchild is

EMPTY. To check whether there exists Tchild, every node should allocate a pointer

variable pointing to the root of Tchild. If the pointer is NULL, Tchild is empty. If Tchild

is not EMPTY, the new group member should be appended to the Tchild. Otherwise,

Tchild should be generated with its root located at the insertion point of TMain. Then,

Tchild is not EMPTY. The remaining new join nodes should be appended into Tchild

and located at the insertion point of Tchild. Figure 4.2 (a) – (d) shows a scenario

in which group members (M1 . . . Mi) are already within the group and, then, the

following group membership events happen:

< MLeave
x ,MJoin

i+1 ,M
Join
i+2 ...M

Join
i+j ,M

Leave
y |where j ≥ 0〉

Between the two leave requests from Mx and My (1 ≤ x ≤ i; 1 ≤ y ≤ i + j), group

59

members Mi+1, . . . Mi+j request to join one by one. Notice that this event model can

represent all scenarios occuring in group membership changes. That is because all

event sequences can be segmented by leave events. For the remainder of this thesis,

this model will be utilized to demonstrate group events.

With the group membership change input, Tchild should be EMPTY after Mx leaves.

Then, when Mi+1 requests to join, the join protocol generates Tchild with the root

located at the TMain insertion point and the join protocol inserts Mi+1 into Tchild.

Now Tchild is not EMPTY. Subsequent join requests, Mi+2, . . . Mi+j can be appended

into Tchild at Tchild’s insertion point. After My leaves, Tchild is assigned to EMPTY.

Here are two examples. The tree shown as Figure 4.2 (b) is the beginning scenario.

The trees shown in Figure 4.2 (c) and Figure 4.2 (d) result from the joining of M4

and M5, respectively. Specifically, as shown in Figure 4.2 (c), M4 joins and a new leaf

< 2, 2 > is generated to represent it. The insertion point for TMain is located at node

< 1, 1 > which should be renamed < 2, 3 > and works as the sponsor. Therefore, a

new intermediate node < 1, 1 > is generated which works as both sponsor < 2, 3 >

and the new leaf < 2, 2 > ’s parent. As shown in Figure 4.2 (d), M5 joins and a new

leaf < 3, 1 > is generated to represent it. < 3, 1 > is appended into Tchild rooted with

< 1, 1 > . Node < 2, 2 >, representing member M4, is selected as the sponsor and is

renamed as < 3, 0 > . The join protocol generates a new node < 2, 2 > which works

as < 3, 0 > and < 3, 1 > ’s parents.

2. Group key updates

For a group member join request from M
i’, the proposed join protocol selects the

60

sponsor S in the same manner as TGDH. However, the difference between TGDH

and the proposed approach is that every group member updates the current group

key, G with H(G) rather than updating all keys associated with the nodes on sponsor

S’s key path, where H is a secure one-way hash function. Then, S and M
i’ initiate a

2-party DH key exchange scheme to generate the shared key, K, which works as the

node key of S and M
i’’s parent node. Finally, S sends M

i’ the encrypted current group

key, {H(G)}K and M
i’ decrypts the ciphertext with key K to obtain the current key,

H(G).

For example, in Figure 4.2 (c), M3 is selected as the sponsor. It refreshes its se-

cret random r3 with r3’ and calculates the updated blinded key of its leaf node,

BK′<2,3> = αr3
′
. Then M3 and the new group member M4 launch a 2-party DH to

calculate a shared key,K<1,1>. M3 sends BKEY3* || BK’<2,3>|| {H(G)}K<1,1> to M4.

M4 calculates K<1,1> and decrypts the ciphertext H(G). Other members can calcu-

late the new group key, H(G), via a secure hash function since they know the current

group key, G.

In Figure 4.2 (d), M4 is selected as the sponsor. It refreshes its secret random r4 with

r4’ and calculates the updated blinded key of its leaf node, BK′<3,0> = αr4
′
. Then M4

and the new group member M5 launch a 2-party DH to calculate a shared key, K<2,2>.

M4 sends BKEY4* ||BK’<3,0>||{H(H(G))}K<2,2> to M5. M5 calculates K<2,2> and

decrypts the ciphertext H(H(G)).

Notice that the mutual authentication between the sponsor and the new group mem-

ber will deploy previous mature technologies such as certifications or the ID-based

61

authentication described in section 3.1.4.

Leave Protocol

1. Strategy for updating key tree structure

Suppose that group member Mi, who is represented by the leaf < h, i >, leaves the

group. Figure 4.3 shows the outline of the leave protocol for TGDH-H.

M i Leaves T child==NULL
No

TGDH

M i T child

Yes Yes

No Yes

No

Inequality 2

Update & Multicast
BKs* @KPi

Dominat ing Alg.

Moving T child

Case 1

Case 4

Case 3Case 2

Figure 4.3: TGDH-H: Leave Protocol

If Tchild is not available, call it case 1. The leave protocol is as same as that for

TGDH. If Tchild is available and < h, i > is within Tchild, call it case 2. The key tree

structure stays the same. If Tchild is available and < h, i > is not within Tchild, there

are two cases: either moving Tchild, which is shown in Figure 4.4 (a), or not. The

leaf node < h, i >’s position and computational cost decide whether Tchild is moved.

Inequality (4.1) decides which is more efficient, moving Tchild or not. The left side

of inequality (4.1) demonstrates the computation cost for updating keys associated

with all the nodes in Tchild and all the nodes in key path KPj (starting at the root

of Tchild and ending at the root of the key tree) in the case in which Tchild is moved.

When Tchild is not moved, the right side gives the computation costs. It includes the

computational cost to update keys associated with all nodes in Tchild, with the key

sub path KPj (starting at the root of Tchild and ending at the root of the key tree)

62

and with the key path KPi (the key path of the leaving group member Mi).

NExpon.
TChild+KPj

> NExpon.
KPj

+NExpon.
KPi+TChild

(4.1)

where Ny
x is the number of y operations for all members within x.

Tchild

Hash

1, 1

M1

M3

2, 3

M5 M3

2, 1

M1 M2

2, 0

Same

DH

M2 Leaves

1, 1

0, 0

1, 0

2, 3
M3

2, 22, 1

M1
M2

2, 0

3, 1

M4 M5

3, 0 3, 1

M4
M5

3, 0

2, 12, 0

1, 0

0, 0

M4 Leaves

0, 0

Tmain

Tchild

Mi leaves

Tchild

1, 0 1, 1

2, 2

Tchild Tchild

Tchild

Tchild Not Moved

Mj

(A) Move Child Tree (B) Original Tree (C) M 2 Leaves (D) M 4 Leaves

Figure 4.4: TGDH-H: Key Tree Updates for Group Members Leaving

If moving Tchild can result in a performance improvement (inequality (4.1) is false),

Tchild should be moved to take < h, i >’s position and < h, i > is cut off. This scenario

is called case 3.

Otherwise, (inequality (4.1) is true, and Tchild stays the same), it is called case 4.

For example, Figure 4.4 (b) is the original key tree. Figure 4.4 (c) shows that M2

leaves. Since M2 is not within Tchild and what is more, inequality (4.1) is false, Tchild

rooted at < 2, 2 > is moved to replace the position of node < 2, 1 > to obtain the

performance improvement. The former node < 2, 1 > is cut off. As its left child

node is removed, node < 1, 1 > is deleted. < 1, 1 >’s right node < 2, 3 > is renamed

< 1, 1 > and it is promoted to its parent’s position.

Figure 4.4 (d) demonstrates that when M4 leaves, Tchild need not be moved since M4

63

is within Tchild.

2. Group key updates

To update the group key in the case in which a group member leaves, the leave

protocol should handle case 1 to 4 separately.

Case 1:

As showed in Figure 4.3, the leave protocol is as same as that for TGDH.

Case 2, 3 and 4:

To update the group key in the case in which a group member leaves, the leave

protocol should update all the node keys and blinded keys associated with the nodes

in key paths which have one or more nodes added/deleted.

Obviously, the node key and the blinded key of every node within Tchild should be

updated. So do all keys on the leaving member’s key path and on the Tchild’s key

path. The dominating algorithm is used to handle this situation and it is described

at Table 4.1.

Dominating key path:

If two key paths intersect, we say that the right key path is dominated by the left key

path. Therefore, the left key path is the dominating key path and is responsible for

updating the overlapped nodes on the two key paths. For example, in Figure 4.4 (b),

KP4, the key path for M4, intersects KP5, the key path for M5, at < 2, 2 >. Since

KP4 is to the left of KP5, KP4 dominates KP5. Therefore, M4 should update and

multicast the blind keys for < 2, 2 >.

64

Without consideration for the root of the key tree, assume a key path KPi inter-

sects n − 1 other key paths, KP1, KP2 . . . KPi−1, KPi+1. . . KPn−1, one by one from

the leaf node to the root, where n is an integer and n is less than the height of the

tree. Assume that the n − 1 corresponding intersections are < x1, y1 >, < x2, y2 >

. . .< xn−1, yn−1 >. The key path KPi, is divided into the following n key sub-paths:

KSPi,<h,i>,<x1,y1>, KSPi,<x1,y1>,<x2,y2>...KSPi,<xn−1,yn−1>,<0,0> The dominating algo-

rithm (algorithm 1 at Table 4.1) describes how to update and forward the keys on

the key sub-paths mentioned above.

Table 4.1: Dominating Algorithm

Algorithm 1: Dominating Algorithm

Every Sponsor M i :

Step 1: Update KSPi,<h,i>,<x1,y1>

Step 2: IF all updated blinded keys associated with key paths which are
dominated by Mi are send out
repeat computing node keys & blinded keys on its key path until it
cannot continue;
multicast updated blinded keys on Mi ’s key path;
ELSE
wait for updated blinded keys associated with key paths which are
dominated by Mi;
go to the beginning of step 2;
End IF

All Group Members:

Step 3: After receiving the blinded keys from all sponsors, update the node
keys on its key path.

65

The dominating algorithms treat fault nodes as the leaving node in the key tree. The

key tree structure is modified following the leave protocol for TGDH. This means

that the fault node and its parent node are deleted and the fault node’s sibling node

is promoted to its parent node. The outlines of the leave protocol for TGDH-H can

be found in Table 4.2.

For example, in Figure 4.4 (c), after moving Tchild, all keys associated with the nodes

in Tchild and Tchild’s key path are updated:

1st round: Key path of M5 is dominated by that of M4. M5 multicasts BK<3,1>.

2nd round: M4 multicasts BK<3,0>, BK<2,1> and BK<1,0>. In Figure 4.4 (d), all

keys associated with the nodes within Tchild and Tchild’s key path are supposed to be

updated:

3st round: Key path of M5 multicasts BK<2,2> and BK<1,1>.

Notice that the authentication to secure multicast messages will deploy the M-SAIDA

described in Table 4.4.

Merge and partition protocols

When the group is divided into sub-groups, the partition protocol will treat the

members who cannot be in contact with the group as leaving members. In this case,

each group member will handle the 0 join & L leave scenario. In a similar way, when

sub-groups merge, the merging protocol deals with the J join & 0 leave scenario.

For every sub-group, the group member hosting the leftmost shallowest key path

is treated as the sponsor for the sub-group which generates the new session secret

66

key, updates keys on its key path and multicasts the updated keys. Both the merge

protocol and the partition protocol can use algorithm 1: Dominating Algorithm to

handle the J join & 0 Leave and 0 Join & L leave scenario respectively.

Table 4.2: TGDH-H: Leave Protocol

Protocol 3 - Leave Protocol for TGDH-H

Step 1: Mi ∈ {M1. . .Mn}represented by leaf < h, i >, request to leave.

Every Group Member:

Step 2: IF (Tchild is not available)
Leave protocol for TGDH.
ELSE
IF (< h, i > is not within Tchild)
IF (inequality (4.1) is FALSE)
Delete Tchild’s parent node
Promote Tchild’s sibling node to its parent node’s position
Move Tchild to replace < h, i >’s position and cut off < h, i >
Dominating Algorithm updates the keys in Tchild
ELSE
The shallowest leftmost leaf of the subtree rooted with < h, i >’s sib-
ling, S, works as the sponsor, too.
Dominating Algorithm updates the keys in Tchild and the key path of
KPS

END IF
ELSE
Dominating Algorithm updates the keys in Tchild
END IF
END IF

All Group Members:

Step 3: After receiving the blinded keys from all sponsors, update the node
keys on its key path.

67

0,0

2,32,0 2,22,1

3,63,0 3,43,2 3,73,1 3,53,3

1,0 1,1

Updated

Key Path

Key

Sub-Tree

S1 S2 S3 S4 S5 S6 S7 S8

Figure 4.5: TGDH-H: Merge Protocol for 8 sub-groups

For example, the procedure to merge 8 sub-groups into a super group is shown in

Figure 4.5. S1. . . and S8 are selected as sponsors for the 8 sub-groups respectively.

Using the dominating algorithm, the protocol can generate the group key within 3

rounds.

1st round: The key path for S2 is dominated by that of S1. The key path for S4 is

dominated by that of S3. The key path for S6 is dominated by that of S5. The key

path for S8 is dominated by that of S7. M2, M4, M6 and M8 update node keys and

blinded keys on their key paths, respectively. Then, M2, M4, M6 and M8 multicast

the updated blinded keys on their key sub path starting at the leaf node and ending

at < 3, 1 >,< 3, 3 >,< 3, 5 >, and < 3, 7 > respectively.

2nd round: The key path for S3 is dominated by that of S1. The key path for S7

68

is dominated by that of S5. Then, after calculating these node and blinded keys on

their key paths, M3 and M7 multicast the updated blinded keys on their key sub path

starting at the leaf node and ending at < 2, 1 > and < 2, 3 > respectively.

3th round: M1 and M5 update node keys and blinded keys on their key paths, respec-

tively. Then, M1 and M5 multicast the updated blinded keys on their key sub path

starting at the leaf node and ending at < 1, 0 > and < 1, 1 > respectively.

The partition protocol follows the same procedure. Notice that the merge and parti-

tion protocols for TGDH-H are the same as those for TGDH+. For simplification, the

merge and partition protocols will not be introduced again in the later sub-sections.

Furthermore, faults can occur even in join/leave/merge/partition protocols in the

contributory group schemes. For joining/merging, the failure node is treated as a

leaving member. The proposal simply treats them as members who leave. Then it

is the leave/partition protocols’ turn to handle them. The detailed procedure for

leave/partition protocols follows what the leave/partition protocols do: deleting the

leaving member’s node and its parent node. The leaving node’s sibling is promoted

to its parent’s position. The others functions in the same manner as described earlier.

Notice that the authentication to secure multicast messages will deploy the M-SAIDA

described in Table 4.4.

4.2.3 TGDH+

The TGDH+ group key scheme is an enhancement of TGDH-H. Like TGDH-H,

TGDH+ also includes join, leave, merge, and partition protocols. The merge and

69

partition protocols for TGDH+ are the same as those for TGDH-H. The join and

leave protocols for TGDH+ both include two main parts: the key tree structure

update strategy and the group key update. The strategies for updating the key tree

structure for join and leave protocols are the same as those for TGDH-H. However,

the method for updating the group key is different. In TGDH+, an auxiliary group

key technique is introduced to update the group key efficiently. Specifically, for the

join protocol, a method for adding an auxiliary group key is incorporated. When

a group member leaves, in addition to the dominating algorithm and child key tree

moving technique, this proposal includes an auxiliary group key technique which is

used to deduce the future group key.

Hash

1, 1

0, 0

2, 1

1, 0

M1 M2

2, 0

M3

1, 1

0, 0

1, 0

2, 3

M4 M3

2, 22, 1

M1 M2

2, 0

G

Same

DH H(G)

1, 1

0, 0

1, 0

2, 3

M3

2, 22, 1

M1 M2

2, 0

H(H(G))

3, 1

M4 M5

3, 0

M4 Joins M5 Joins
Tmain

Tchild

{M1..Mi,}

{Mi+1… …Mi+j,}

{MX}

{MY}

Insertion

Point for

Tmain

Insertion

Point for

Tchild

Insertion

Point for

Tmain

Tchild=EMPTY

Tchild

Insertion Point for Tchild Insertion Point for Tchild

Tchild

M1 M2 M3

G G G

Auxiliary Group key:

M1 M2 M3

G G G

Auxiliary Group key:

(A) Join Protocol (B) Original Tree (C) M 4 Join (D) M 5 Join

Figure 4.6: TGDH+: Key Tree Updates for Group Members Joining

70

Join Protocol

The join protocol for TGDH+ is almost the same as that for TGDH-H. In addition

to what the TGDH-H join protocol does, the join protocol for TGDH+ stores an

auxiliary group key for every group member in the main key tree as well.

Specifically, when a group member joins and the child key tree is EMPTY, the current

group key G is stored by every group member within Tmain as the auxiliary group key

Ga. When a group member joins and the child key tree is not EMPTY, the auxiliary

group key stays the same. For example, the trees shown in Figure 4.6 (c) and Figure

4.6 (d) are what happens when M4 and M5 are inserted into the tree shown in Figure

4.6 (b). In Figure 4.6 (c), when M4 joins, since Tchild is EMPTY, every group member

in Tmain, M1, M2 or M3 stores group key G as its auxiliary group key: Ga = G. In

Figure 4.6 (d), when M5 joins, since Tchild is not EMPTY, the auxiliary group key

for every member in TMain (M1, M2 or M3) stays the same.

Leave Protocol

M i Leaves T child==EMPTY
No

TGDH

M i T child

Yes Yes

No Yes

No

Inequality 2

Update & Mult icast

BEKY i*
{ }

Main Child

Curr DH

Left Left

T T

G K

M M
Dominat ing Alg.

Moving T child

Case 1

Case 4

Case 3Case 2

Figure 4.7: TGDH+: Leave Protocol

In this subsection, the following two issues need to be addressed.

- How to maintain the key tree structure when one group member leaves.

- How to update the group key.

71

Figure 4.7 shows the outline for the TGDH+ leave protocol which is the same as

that for TGDH-H except for case 2. For all cases, the strategy of key tree structure

maintenance is the same as that for TGDH-H. When case 1, 3 or 4 occurs, the leave

protocol for TGDH+ releases all the group member auxiliary keys and the rest is the

same as that for TGDH-H.

If case 2 occurs in which Tchild is available and < h, y > is within Tchild, unlike

TGDH-H which utilizes the dominating algorithm, the leave protocol for TGDH+ is

different.

As shown in Figure 4.8, to obtain performance gain, this leave protocol does not

update the DH-based keys in the key tree for case 2 but updates the group key via

Hash with the auxiliary group key as input. The specific idea behind this proposal

is that group members in Tmain can be aware of key material which is not known by

members in Tchild. Therefore, after a member which belongs to Tchild, leaves, the group

members in Tmain can calculate a new group key which cannot be compromised by

the group members in Tchild, including the leaving one. Then, a designated member

in Tmain delivers the new group key to a designated member in Tchild within a secure

channel, who, in turn, sends the group key to other members in Tchild via a secure

multicast channel.

The following is a method for calculating the current group key, Gcurrent, and for

updating the auxiliary group key Ga.

Group Key Updates: When group member Mn+k ∈ {Mn+1 . . . Mn+j} where 0 <

k ≤ j leaves, the leftmost shallowest leaf node called the sponsor in Tmain generates a

72

…. ….

Tmain

Tchild

{M1..Mn,}

{Mn+1.. Mk…Mn+j,}

M1

Mk leaves

M2 M3 Mn-1 Mn

Mn+1 Mn+j

….

Diffie-Hellman:

Original Key Tree Current Group Key

Kchild

Mn+k-1 Mn+k+1 Mn+x

{Hj(Ga  C)}K DH

H2(Ga C) 

Multicast: {Hj(Ga C)}K Child

Figure 4.8: TGDH+: Group Key Updates for Case 2

new random value C. The sponsor encrypts C with Ga and multicasts the ciphertext

to all group members in Tmain . Consequently, every group member ∈ {M1 . . . Mn}

can calculate a new group key Gcurrent = Hj(Ga ⊕C). Next, the sponsor will establish

a secure channel with the sponsor of the child key tree to deliver the current group

key. As shown in Fig 4.8, the leftmost shallowest leaf of Tmain, for example, M1

launches a 2-party DH scheme with the leftmost shallowest leaf of Tchild, for example,

Mn+x, to generate a shared key, which is used to encrypt Gcurrent = Hj(Ga ⊕ C).

After using the dominating algorithm to update the keys associated with the nodes

in Tchild, Mn+x multicasts BKEYn+x || (Gcurrent)Kchild where Kchild is the new sub

group key associated with the root of Tchild. Therefore, every group member in Tchild

can calculate the new sub-group key and decrypt Gcurrent. Notice that Gcurrent =

73

Hj−x(Ga ⊕C) when the (x+1)th group member leaves and all leaving x+1 members

belong to the child key tree. For example, when the second group member in Tchild

leaves, Gcurrent = Hj−1(Ga ⊕C). When the third group member in Tchild leaves,

Gcurrent = Hj−2(Ga ⊕C).

Auxiliary Group Key Updates: If there is no new group member joins, there is no

need to update C. However, if a new group member joins which is inserted into Tchild,

C should be re-generated and its ciphertext encrypted by Ga will be delivered to all

other group members in Tmain.

4.3 Contribution # 2: Periodic Group Rekeying Schemes

Although proposals such as TGDH-H and TGDH+ are more efficient than previ-

ous popular solutions such as TGDH or STR, challenges still exit when the rate of

join/leave requests is too high. They introduce inefficiency and out-of-sync problems

[68] and cannot process rekey requests in time, especially for resource-limited net-

works. An alternative way is to develop a time-driven group rekey scheme, namely, a

periodic batch rekey which can be utilized to replace the member-driven group rekey

scheme.

Periodic rekey schemes can alleviate the out-of-sync problem and improve efficiency.

Within this technique, all join and leave requests are processed in a batch at the end

of each rekeying interval. This means that the group members who need to leave can

stay longer and new group members have to join later. Periodic batch rekeying is a

trade-off between group key security and performance.

74

This research proposes an efficient periodic contributory group batch rekey scheme

which is different from previous proposals. It handles join requests individually and

deals with leaving requests in a periodic batch manner. The focus is to minimize

the computational cost and communication overhead required. The rate of join/leave

requests is not an intractable problem for the group key scheme if the periodic batch

rekey strategy is utilized.

a.
Same

Changed

4, 0l = 4

1, 0 1, 1

1, 2

1, 3 1, 6 1, 7
l = 1

2, 0 2, 1
2, 3

M6

M8

3, 0

l = 2

M1 M2

M3

M4 M7

3, 1

1, 4

1, 5

1, 2

MX

l = 3

M5

leave join leave

J L

Figure 4.9: Periodical Group Key - Fewer Join Members than Leave Members

However, the periodic batch rekey strategy leads to a vulnerability window [68] which

is the period of time starting at the first joining or leaving request for the rekey in-

terval, and ending at the end of the rekey interval. If the vulnerability window is too

long, security can be compromised. However, it can alleviate the out-of-sync problem

and improve efficiency. Thus, the periodic batch rekey strategy is a trade-off between

group key security and efficiency. The periodic batch rekey strategy is used in enter-

tainment/education applications which requires a security service which is not very

75

1, 0l = 1 1, 1

0, 1

1, 3 1, 6 1, 7

2, 0 2, 1
2, 3

M2 M4 M8

3, 0

l = 2

Mz

MX

M6
M7

3, 1
l = 3

4, 0l = 4

1, 41, 5

MY

1, 2

Join

b. J > L

Same

Changed

leave

2, 2

0, 2

M3

1, 4

M5

Join

Join

1, 0

leave
M1

Figure 4.10: Periodical Group Key - More Join Members than Leave Members

stringent.

4.3.1 Join Protocol

The following two issues need to be addressed for this join protocol:

- How to insert a new leaf representing a new group member into a key tree?

- How to update the group key?

Insertion strategy for group members joining

The group membership events below are the same as that described in TGDH-H.

MLeave
x ,MJoin

n+1 ,M
Join
n+2 , ...,M

Join
n+j ,M

Leave
y |where j ≥ 0

The leave request of M x/My, may or may not happen;

76

the join request of M n+1/. . . /M n+j may or may not occur.

In this rekeying interval, our join protocol’s policy first replaces the new join group

member with openings in the key tree resulting from leaving members. By contrast, if

there are no such openings, new group members such as Mn+2, . . . Mn+j are appended

in one child key tree, namely, Tchild.

According to this, when group member Mn+1 requests to join, the leaf node represent-

ing leaving member Mx is replaced with that of Mn+1. When group member Mn+2,

requests to join, there is no opening caused by any leaving members and meanwhile,

Tchild is not available either. Therefore, the proposed strategy will generate Tchild

with the root at insertion point TMain. (refer to Fig. 4.2 (a) and (b)). The following

join request, Mn+3, . . . Mn+j can be appended into Tchild at Tchild’s insertion point

(refer to Fig 4.2 (a)and (c)). The insertion points for Tchild and TMain are the shal-

lowest leftmost nodes of Tchild and TMain, respectively.

Group key updates

Once a group member join request is sent from Mi’, every group member updates the

current group key G with H(G). If there is an opening caused by a leaving member, it

is replaced with the new member. The sibling of Mi’ (if it is a leaf node) or the left-

most offspring leaf for the sibling of Mi’ works as the sponsor, S. Otherwise, following

the strategy of TGDH, the shallowest leftmost leaf node is selected as a sponsor, S. S

and Mi’ initiate a two-party DH key exchange scheme to generate the secret key, K.

77

S sends Mi’ the ciphertext {H(G)}K . K also works as the key for S and Mi’s parent

node.

For example, Fig. 4.2 (b) is the original tree structure in which the insertion point

for Tmain is located at node < 1, 1 >. In Fig. 4.2 (c), M4 joins and a new leaf

< 2, 2 > is generated to represent M4. Since there is no opening caused by a leaving

member, the old < 1, 1 >, representing M3, is renamed < 2, 3 >, which works as

the sibling of < 2, 2 >. And well, a new intermediate node < 1, 1 > is generated

to work as < 2, 3 > and < 2, 2 >’s parent. K<1,1> is calculated with the launching

of a two-party DH between M4 and M3, which is selected as the sponsor. M3 sends

BKs*@SP3+BK’<2,3>+{H(G)}K<1,1> to M4. M4 calculates K<1,1> and decrypts the

ciphertext H(G). In Fig. 4.2 (d), M5 joins and it is appended into Tchild rooted with

< 2, 2 >. The rest of the procedure is done in a similar manner.

Notice that the mutual authentication between the sponsor and the new group mem-

ber will deploy previous mature solutions such as the ID-based authentication de-

scribed in section 3.1.4.

4.3.2 Rekeying Protocol at the End of the Interval

For a group G with n users, {M1, M2 . . . , Mn}, in every rekeying interval, consider a

J Join & L Leave scenario (J members need to join and L members need to leave the

group). At the end of the rekeying interval, the proposed scheme follows the method

described below:

If J ≤ L, the key tree is updated as follows: the leftmost leaving nodes should

78

be updated with the new members with priority. J of the L departed nodes are

replaced with the J join nodes following the one-to-one map, {MDepart
i → MJoin

i }.

The remaining L − J departed nodes’ siblings will be promoted to their parents’

positions and their parents will be erased. So, the PVs and PBs of L key paths

should be updated. Fig. 4.9 demonstrates this procedure in which Mx joins, while

M3 and M5 leave. Mx takes M3’s position while M3 leaves and M6 is promoted to its

parents’ position because M5 leaves. PVs@M4 and PVs@M6 are updated by the

sponsors M4 and M6 respectively at the end of the interval.

New members may join before any members leave. Therefore, if there is no available

opening, this method allocates the new members in the child key tree first and then

relocate them to openings at the end of the interval.

If J > L, Tchild should be removed to replace the leftmost shallowest leaving leaf.

Then, L−1 new group members, take the places of the L−1 departed members. The

remaining J −L+ 1 new group members stay in Tchild. So, the PVs and PBs of L

key paths and all the nodes in Tchild should be updated. The ASAP protocol, which

will be introduced later, is used to handle this J Join & L leave case. For example,

Fig. 4.10 demonstrates this procedure in which Mx, My, and Mz join, with M1 and

M5 leaving. My and Mz take M5 and M1’s positions respectively. Mx plays the role

of M3’s sibling after Mx joins. Keys associated with M2, M3 and M6 are updated by

the sponsors M2, M3 and M6, respectively.

79

Amortized Signing & Amortized Path (ASAP) protocols

In this section, a method will be introduced for updating the key tree in an authen-

ticated manner. First, the Amortized Path (AP) protocol based upon Dominating

Key Path Algorithm is presented. Then, the Amortized Signing (AS) algorithm to

authenticate multicast messages is proposed.

Amortized Path Protocol

In a key tree, while k key paths should be updated, every sponsor utilizes Dominating

Key Path to decide its dominating key path and the key paths it dominates. Then,

every pair of the dominating sponsor and the dominated sponsor launches an ID-

based two-party Diffie-Hellman key exchange scheme [26] to generate the new secret

key, K ′, between them. The dominated sponsor encrypts the updated public keys on

its key path and other public keys it collects from the sponsors it dominates with the

key K ′ and then delivers the ciphertext to the dominating sponsor. This is repeated

until the leftmost sponsor receives all the updated public keys of k key paths, signs

them with the Amortized Signing algorithm (AS) and multicasts the updated public

keys on the key tree. In contrast to TGDH and Queue-Batch, the proposed AP pro-

tocol utilizes unicasts to replace multicasts and uses encryption operations to replace

signing operations.

For example, in Fig. 4.10:

1st round: The key path for M3 is dominated by that of M2. M2 sends M3: PB<2,0>

M3 sends M2: PB<2,1>+{PB<0,2>+ PB<1,2>} PV<3,0>

2nd round:

80

M2 sends M6: PB<3,0>

M6 sends M2: PB<3,1>+{ PB<1,5>+ PB<2,2>} PV<4,0>

3rd round:

M2 signs and multicasts PB<1,1>+ PB<2,0>+ PB<3,0> +PB<0,2>+ PB<1,2>+ PB<2,1>

+ PB<1,5>+ PB<2,2> + PB<3,1>

All group members update the PBs and PVs on their key path and obtain the group

key.

Table 4.3: Amortized Path (AP) Protocol

Protocol 4: Amortized Path Protocol (AP)

Every Sponsor Mi:
1: updates its key path until it cannot
2: launches a 2-party Diffie-Hellman with the sponsors it has dominated or
dominates
3: IF there are new keys which can be updated for Mi,
4: go to step 1
5: else
6: encrypts all updated public keys it knows and sends ciphertext to its domi-
nating sponsor

Leftmost Sponsor ML:
1: Signing all updated public keys on the key tree via AS
2: multicasts the result

All group members:
1: after receiving the PBs from leftmost sponsors ML, updates the PVs and
group key on its key path.

81

Authenticated Unicast and Multicase

ID-based DH providing authentication functionality is utilized in a join protocol to

generate the shared key between the new member and the sponsor. It is also used

in the AP protocol between the dominating sponsor and the dominated sponsor.

Specifically, after a shared key is generated, the group key or public keys should be

encrypted and delivered from one party to another. Specifically, the unicast message

is encrypted with symmetric encryption algorithms. To protect this ciphertext against

insider attacks, efficient hash-based message authentication codes (MAC) known as

HMACs [12] are used to authenticate the unicast transmission

According to the requirements of the group rekeying schemes, rekeying multicast

messages should be authenticated and reliable. Unlike unicast schemes, a multicast

authentication scheme based solely upon MAC cannot be both efficient and collusion

resistant [6]. Consequently, to guarantee a reliable multicast service for authentication

information, Park and Siegel [23] propose the Signature Amortization Information

Dispersal Algorithm (SAIDA) to encode authentication information with Rabin’s

Information Dispersal Algorithm (IDA) [27].

This proposal signs multicast messages with an amortized signing technique, namely

M-SAIDA (Modified Signature Amortization Information Dispersal Algorithm) in

which an RSA digital signing algorithm signs the hash of the entire multicast rekeying

messages. This is a previously proposed modification of SAIDA [9]. In addition

to the efficient signing feature, some techniques for guaranteeing the reliability of

not only the digital signatures but also the rekeying messages is proposed. The

82

proposed algorithm (M-SAIDA) outlined in Table 4.4, satisfies the requirements of

both zero packet loss and computational efficiency. The implementation of the IDA

which presents reliable transmission for data packets by introducing some amount of

information redundancy have been documented well [23, 27]. IDA splits the source

data, for example, PBi, into n pieces, which are then encoded by the IDA algorithm.

At the receiving end, the IDA can reconstruct PBi after receiving any m pieces

where m < n. However, guaranteeing zero packet loss comes at the cost of increased

communication overhead.

To update the key tree, this proposal multicasts rekeying messages once according to

ASAP. Hence, one RSA signing is required. In TGDH, every sponsor performs the

signing [1, log2k] times. Therefore, in total, all sponsors sign 2k−1 times for TGDH,

where k is the number of sponsors. In Queue-Batch, even using the AS algorithm,

J + L− 1 signings are required.

4.3.3 Merging and partition protocols

When the group is divided into sub-groups, such as during network disruptions, the

partitioning protocol will treat the members who cannot be in contact with the group

as leaving members. In this case, each group member will handle the 0 join & L leave

scenario. In a similar way, when sub-groups merge due to network re-connections,

the merging protocol deals with the J join & 0 leave scenario. For every sub-group,

the group member hosting the leftmost shallowest key path is treated as the sponsor

for the sub-group which generates the new session secret key, updates keys on its key

83

path and multicasts the updated keys.

The rekeying, merge and partition protocols can use the ASAP protocol to handle

the J join & L Leave, J join & 0 Leave or 0 Join & L leave scenarios, respectively.

Table 4.4: M-SAIDA Algorithm

Algorithm 2: M-SAIDA

Sponsor M i :

INPUT : Public keys PB1, PB2... PBn;
OUTPUT: Public keys and signature encoded by algorithm IDA-Encode
[27];

1:
2:
3:
4:
5:
6:
7:
8:
9:

Notation. || : concatenation; H = NULL;
/ * the hash value for PB1, PB2... PBn */
for 1 ≤ i ≤ n; i+ +;
H = Hash(H||PBi);
/* Hash is an secure one-way-hash function such as SHA-256 */
end for
M i multicast (IDA-Encode (PB1), . . . IDA-Encode(PBn), IDA-
Encode (SignRSA(H)));
/*RSA is used because it is efficient in verification.*/

The Receiver M 1 . . .M n :

INPUT : Public keys and signature encoded by algorithm IDA-Encode
[27];
OUTPUT : Public keys and signature;

1:
2:
3:
4:
5:
6:

for 1 ≤ i ≤ n; i+ +;
IDA-Decode (PBi);
H = Hash(H||PBi); /* Hash is an secure one-way-hash function such
as SHA-256*/
end for
VerifyRSA (H, IDA-Decode (SignRSA(H)))

84

4.4 Contribution # 3: Maximum Matching Algorithms

Many scenarios demonstrate that the group key is established among a number of

members starting at a certain time. For example, when an event is going to start

at a certain time, several group members co-operate with each other to generate the

group key at this time. Another example would be, after the group communication is

partitioned, a group is divided into two or more sub-groups. Sub-groups with fewer

members should generate the new group key among sub-group members at a certain

time. Both cases can take advantage of the algorithms presented below. contribution

focusses on the efficiency of a binary tree-based group key establishment. To reduce

its communication overhead, Maximum Matching algorithms (M2) are proposed to

place the group members into pairs and then the blinded keys can be exchanged

in every node pair or node set pair to accomplish the binary tree-based group key

agreement scheme. While most previous algorithms [4], [62] have been primarily

sequential, M2 is a parallel algorithm. Furthermore, M2 algorithms require that each

member keeps track of only its matched partner instead of remembering the entire

group member list which reduces the storage cost for every node. Therefore, the M2

algorithms reduce communication costs and decrease the number of rounds during

the group key generation procedure.

4.4.1 Maximum Matching Algorithms

To deliver blinded keys associated with nodes in the key tree, a regular solution is to

multicast/broadcast them. Unfortunately, this method requires large communication

85

bandwidth so it is not an efficient choice, especially for MANETs, the resource-limited

network settings. To lessen communication overhead, in every level of the key tree,

every node requires only its sibling’s blinded keys to continue the Diffie-Hellman

operations. First, two nodes or node sets are matched into a pair and then the

partial keys (blinded keys) between the node pairs or node set pairs are exchanged

via unicast to decrease communication costs. This technique should be used at each

group key establishment round until the node key of the key tree’s root is calculated.

Two Maximum Matching Algorithms

A matching on a graph is a set of edges, no two of which share a vertex. A maxi-

mum matching, M , contains the greatest number of edges possible. M is a maximum

matching if no matching on the graph contains more edges than M . Edmond [16]

proposed the blossom algorithm to find the maximum match in a graph. The match-

ing algorithm [83] is the latest for random graphs and the self-stabilizing Synchronous

Maximal Matching (SM2) algorithm [19] is the latest proposal for ad hoc networks.

This thesis utilizes/proposes two solutions, one is SM2 and the other is Depth-first

Spanning Maximal Matching (DST-M2), which will be described later.

Synchronous Maximal Matching (SM2) Algorithm

The Synchronous Maximal Matching (SM2) algorithm assumes that each node ni

maintains the identities of its neighbours in an array neighbors(n i) by sending and

listening to the beacon (keep-alive) message periodically. It is fault-tolerant in the

sense that it can detect occasional new link creations in the network. SM2 demands

86

O(n) steps for a general graph where n is the group size. In this algorithm group

members can make proposals to their neighbours or remote members to match with

them. If the proposal is accepted, the two members are matched and they do not

accept other proposals or make proposals to others. If there is no response to the

proposal, the member should withdraw it and make a new one to other members. In

addition to the three original rules proposed in the SM2 algorithm, the fourth rule

for handling remote nodes is described at Table 4.4:

Depth-first Spanning-Tree Maximum Match (DST-M2) Algorithm

The other M2 algorithm, based upon the Depth-First Spanning Tree [82] and [21], is

introduced in this proposal as well. The advantage of DST-M2 is that fewer rounds,

O(log2n) are required to reach maximum matching where n is the group size. How-

ever, to take advantage of this strength, the topology of the network is assumed to

be known by every group member in advance and this can be achieved with such

technologies as Global Positioning System (GPS) location systems. Furthermore, to

generate the initial tree, every node requires O(n) compuational cost but unlike the

shortest path algorithm, no communication overhead is required.

4.4.2 Vertex Shrinking Algorithm

This algorithm is proposed to combine matched nodes into a node set which can be

treated as one node set for the next round (level).

87

Table 4.5: Synchronous Maximal Matching (SM2) Protocol

Protocol 5: Synchronous Maximal Matching (SM2)
/* MATE (a) = b means that a’s matched partner is b. We say that ni and
nj are matched if MATE (ni) = nj & MATE (nj) = ni. where nj and ni, are
group members */

Rule 1: /* ni accepts the proposal from nj. ∗ /
If MATE (ni) = NULL and nj sends a request to ni,
Then MATE(ni) = nj .

Rule 2: /* ni makes the proposal to nj:*/
If MATE (ni) = NULL and nj is with the smallest ID among un-
matched group members.
Then ni sends a request to match nj, and MATE(ni) = nj

Rule 3: /* ni withdraws the proposal */
If MATE (ni) = nj but MATE (nj) 6= ni
Then MATE (ni) = NULL

Rule 4: /* Isolated group members make proposal to remote un-matched
group members*/
If MATE (ni) = NULL and (∀nj, MATE (nj) 6=ni)
Then ni sends requests which are replied to by the nearest non-
matched group member.

88

Table 4.6: Depth-first Spanning Tree algorithm M2 (DST-M2) Protocol

Algorithm 3 - Depth-first Spanning Tree algorithm M2 (DST-M2)
/∗Vi is a node or a node set.∗/

Step 1: All group member nodes launch minimum Depth-first Spanning
Tree algorithm (DST). The roots will be the nodes with the small-
est ID compared with their neighbours. We get a collection of
independent spanning trees.

Step 2: DST is executed to get a full spanning forest F which connects
all spanning trees

Step 3: The post-order walking algorithm over spanning forest F is exe-
cuted by the source node. Then, a sequence S = (V1, V2, . . . Vn)
is generated

Step 4: Delete all repeated Vi in S.
If Vi is not a group member node, it should be deleted in S, too.
A new sequence S’ = (V

1’, V
2’, . . . V

n’) is obtained.

Step 5: For S’ = (V
1’, V

2’, . . . V
n’), V

2i’−1 and V
2i’ are matched where

1 ≤ i ≤ n/2

Table 4.7: Vertex Shrinking Algorithm

Algorithm 4: Vertex Shrinking Algorithm (VS)
/* Vertex Shrinking algorithm combines every couple (Set1, Set2), the out-
puts of M2 algorithm.*/

Step 1: Initializes a new node set newset = NULL

Step 2: If node ni ∈ Set1 or Set2, Then ni ∈ newest

Step 3: ∀e = (ni, nj) ∈E where e is an edge and E is a set including all
edges.
If both ni and nj ∈ Set1 or Set2,
Then e is marked as an inner line ∈L.

89

4.4.3 Utilization of Maximum Matching Algorithms

In every round of the group key establishment or every level of the binary key tree,

M2 and VS algorithms are used together to fulfill the task.

Let M = ({m1; . . .; mn}; L) be the topology of a multi-hop location-aided

wireless ad hoc network where mi is a node and L is the set of communication

channels established by two nodes. So, M can be modelled as an undirected graph

G = ({n1; n2; . . . ; nn}, E) where vertex ni corresponds to node mi in M and

E denotes the set of edges in L. There is an edge in E between a pair of vertices ni

and nj if nodes mi and mj in M enable successful communication directly.

Table 4.8: Integrated Algorithms to Achieve Group Key Establishment

Algorithm 5: Integrated Algorithms
/* this algorithm is developed to construct the key tree and generate the
group key */ Round l (1≤ l ≤h-1)

Step 1: M2 algorithm provides a set of triples (l, ni, nj). . . .

Step 2: Node or node set ni and nj simultaneously exchange intermediate
blinded keys with each other. All group members compute node
keys and blinded keys associated with the node at the (l+1)th level
on its key-path according to TGDH .

Step 3: Vertex Shrinking (VS) algorithm combines every matched couple
into one node set.

Step 4: If the new node set contains all group member nodes,
Then exit
Else l ++, goto step 1.

90

According to this algorithm, we find that at the lth round (level) where 1 ≤ l ≤ h−1,

the M2 algorithm matches pairs of vertices, for example, (ni, nj), in graph G. Based

upon triples (l, ni, nj), nodes or node sets mi and mj exchange their intermediate

blinded keys with each other at level l in the key tree. The vertex shrinking algo-

rithm updates graph G by combining every pair (ni, nj) into a new super node set,

namely, (ninj). The procedure is repeated until only one node set, which contains

all group member nodes, is left in graph G. Figure 4.11 - 4.13 and Figure 4.14 - 4.16

demonstrate step-by-step procedures for running an Integrated Algorithm (Table 4.8)

by using the SM2 and DST-M2 algorithms. According to every round’s triple outputs

shown in Figure 4.11 - 4.13 and Figure 4.14 - 4.16, the procedure for constructing

every level of the key tree T is shown in Figure 4.17 - 4.19.

1

2

3

4

7

5

6

8

12

11

9

10

Figure 4.11: Intermediate Result by Using the SM2 Algorithm - Round 2

Figure 4.11 shows the topology of the network upon which the Integrated Algorithm

(Table 4.8) is processed to output the triples (l, ni, nj) round by round. If the In-

tegrated Algorithm (Table 4.8) uses the SM2 algorithm, every group member can

obtain the triple results itself. For instance, group member M1 can process the sorted

triple lists, {2, M1, M2}, {3, M1M2, M3M4}, and {4, M1M2 M3M4, M5M6M7}.

91

Result for Figure 4.11 Match Pairs:(1, 2) (5, 6) (3, 4) triple results: (2, 1, 2)(2,

3, 4)(2, 5, 6)

1

2

3

4

7

5

6

8

12

11

9

10

Figure 4.12: Intermediate Result by Using the SM2 Algorithm - Round 3

Result for Figure 4.12 Match Pairs:(12, 34) (56, 7) triple results: (3, 12, 34) (3,

56, 7)

1

2

3

4

7

5

6

8

12

11

9

10

Figure 4.13: Intermediate Result by Using the SM2 Algorithm - Round 4

Result for Figure 4.13 Match Pairs:(1234, 567) triple results: (4, 1234, 567)

Result for Figure 4.14 Post-order walk-list: (1,2,3,4,5,6,7) Match Pairs:(1, 2) (5,

6) (3, 4) triple results: (2, 1, 2)(2, 3, 4)(2, 6, 5)

Result for Figure 4.15 Post-order walk-list: (12,34,65,7) Match Pairs:(12,34)

(56,7) triple results: (3, 12, 34)(3, 65, 7)

92

1 4

2
9

3
11

7

6

5

Figure 4.14: Intermediate Result by Using the DST-M2 Algorithm - Round 1

1

2

3

4

7

5

6

11

9

Figure 4.15: Intermediate Result by Using the DST-M2 Algorithm - Round 2

Result for Figure 4.16 Post-order walk-list: (1234,657) Match Pairs:(1234) (567)

triple results: (4, 1234, 567)

If the Integrated Algorithm (Table 4.8) uses DST-M2, it is assume that every node

can be aware of the topology of the network by using a GPS system. It outputs a

series of triple results (l, ni, nj) and forwards them to the node or node set ni and

nj with the support of the Prufer code algorithm [14]. For instance, group member

M2 is offered the sorted triple list, {2, M1, M2}, {3, M1M2, M3M4}, and {4, M1M2

M3M4, M5M6M7}.

Consequently, based upon these triples, nodes exchange blinded keys with matched

93

1

2

3

4

7

5

6

11

9

Figure 4.16: Intermediate Result by Using the DST-M2 Algorithm - Round 3

partners in every round and the height-balanced binary tree can be constructed. As

shown in Figure 4.17 - 4.19, a binary tree-based group key establishment scheme

such as TGDH can be accomplished and the group key is calculated by every group

member. Notice that while one group member node is out of service, the maximum

matching algorithms can treat the node as a member who is leaving or is not avail-

able. Consequently, the failure node’s partner need not do any processing and simply

waits for the next round.

l = 4

l = 3

2, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1l = 2 2, 2

l = 1
M1 M2

1, 4 1, 5

M7

M3 M4 M5 M6

Figure 4.17: Key Tree Construction with the M2 Algorithm - Round 1

94

l = 4

3, 0 3, 1l = 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 32, 2

l = 1

l = 2

M1 M2 M3 M4 M6

M7

1, 4 1, 5
M5

Figure 4.18: Key Tree Construction with the M2 Algorithm - Round 2

l = 4 4, 0

3, 0 3, 1

1, 0 1, 1 1, 2 1, 3l = 1

2, 0 2, 1 2, 32, 2l = 2

M1 M2 M3 M4 M6

M7

1, 4 1, 5

l = 3

M5

Figure 4.19: Key Tree Construction with the M2 Algorithm - Round 3

4.5 Contribution # 4: Hybrid Architecture

4.5.1 Overview of the Fourth Contribution

For some cases which occur in hostile environments, the group key management

scheme should switch from centralized to contributory schemes. One example from

a military scenario follows. A collection of wireless mobile devices carried by soldiers

or a tank cooperates in relaying packets. In such a scenario, mobile nodes establish

routes dynamically among themselves to form networks. However, all nodes except

for the one with the tank, have limited battery power and processing capacities. For

the sake of power-consumption and computational efficiency, the tank can work as

95

the key server while a centralized group key management scheme is deployed.

Nevertheless, it is possible for the tank to be out of service during adverse conditions.

Alternatively, some of the soldiers may not be able to be in contact with the tank.

In case of such emergencies, a straightforward solution is to launch a contributory

group key agreement, for example, TGDH [25], TGDH-H, or TGDH+, among the

nodes which cannot be in contact with the centralized key server. However, the disad-

vantages are: 1) every node should install two sets of group key management schemes,

2) every node should store two sets of individual keys, auxiliary keys and group keys,

3) it uses up critical time to generate the new contributory group key, and 4) gener-

ating the new group key requires additional computational cost and communication

overhead.

In this sub-section a novel hybrid group key management protocol which removes the

above drawbacks is proposed. In particular, this protocol enables fast switching be-

tween centralized and contributory schemes with minimal communication costs and

computational overheads while using fewer keys. Specifically, the hybrid architecture

has centralized and contributory group key management schemes using a Logical Key

Hierarchy (LKH)-based management technique to maintain one set of keys in a bi-

nary key tree. When the key server is online, the computationally efficient centralized

management is deployed. While the key server is out of service for all group members

or part of the group members and for handling network disconnections, an efficient

contributory scheme, such as TGDH-H or TGDH+ is used to update the group key

shared by the group members who cannot connect with the key server.

96

Server

Key Tree

Structure

Maintenance

(Marking)

Reliable

Multicast

Periodic

Rekey

Scheme

Group

Member

Join/leave

Group Member

Encrypt&Signing

Verify&Decrypt

Update Key

Path

Group Member Join/leave

Maintenance Key Tree

Structure (Marking)

Figure 4.20: Centralized Group Key Management

4.5.2 Hybrid Architecture

This section will present the hybrid architecture which combines the advantages of

the centralized approach’s efficiency and the contributory scheme’s fault tolerance.

The basic idea behind the hybrid architecture is that when the key server is down

(off-line), then group key management is done using a contributory scheme such as

TGDH-H or TGDH+. If the key server is on-line, then there are two possibilities.

If all the group members are able to access the key server (no partitioning of the

group), then a centralized scheme such as LKH+ [61] is used in which the key server

is responsible for calculating and delivering the intermediate keys associated with

the binary key tree following formula (3.5), since the key server is deemed to have

a high processing capability. On the other hand, if the group is partitioned (some

of the members are not able to access the key server), then a combination of the

two schemes is used – the members with access to the key server use the centralized

97

Periodic Rekey Scheme

Key Tree Structure

Maintenance

ID

Compare

Key

Tree

Update

Group Member Join/leave Request

Authentication

Reliability

2-party

DH

Multicast

Sponsor

SAIDA

New

Group

Member

Group

Member

Group

Member

Group

Member

Dominating

Algorithm

(Group Member)

Figure 4.21: Contributory Group Key Management

scheme while the others use the contributory scheme. Both of them follow the TGDH

key tree to update the node keys and blinded keys associated with the nodes on the

binary key tree.

Figures 4.20 and Figure 4.21 demonstrate the required components for implementing

the centralized and the contributory group key management schemes, respectively. As

mentioned earlier, it is assumed that every group member or the key server is aware

of any group membership changes based upon the group member join/leave request

component which is part of the View Synchrony service. Furthermore, the server

and the members modify the key tree structure according to the key tree structure

maintenance component which follows that of TGDH or binary LKH (TGDH is the

binary LKH in terms of the key tree structure).

In general, centralized group key management administers the group key update for

group membership changes. In Figure 4.20, the key server is responsible for updating,

98

encrypting and authenticating rekey messages including individual keys, auxiliary

keys and group keys. Furthermore, it forwards the encrypted rekey messages to other

group members via the reliable and authenticated multicast component which is also

part of the View Synchrony service. Every group member should utilize the verify

& decrypt component to process the rekey messages to update its key paths and the

group key.

However, the centralized scheme cannot handle situations such as key server failure or

network partitions due to intermediate nodes being out-of-service or severe network

congestion. This problem can be dealt with efficiently by the proposed contributory

scheme. When the key server loses its availability, all group members manage the

key tree themselves in a contributory mode. Since both centralized and contributory

key management use the same key tree structure, no rekey operations are processed

and no rekey messages are forwarded to implement the switch from the centralized

scheme to the contributory scheme.

Figure 4.21 shows the components of the contributory scheme, in which the ID-

Comparison algorithm [74] and the Dominating algorithm are deployed to update the

key tree. The sponsor’s (i.e., the group member selected by the algorithm to update

and forward the keys on the key path) reliable and authenticated multicast component

(for instance, M-SADIA) forwards to the other group members the updated public

keys. Upon receipt, the other group members calculate the new group key. As in

previous contributory group key management schemes [25], [26], the sponsor should

process the two-party DH key exchange (for instance, ID-based DH) with the new

99

group member as well.

Specifically, the LKH+ [61] scheme can be used in centralized group key schemes and

TGDH-H, or TGDH+ can work as the contributory group key scheme.

4.6 Contribution # 5: Further Improvements for FEA-M

FEA-M can be deployed to encrypt group messages exchanged among group members

efficiently. In this sub-section, further vulnerabilities of the FEA-M’s improved variant

[35] are discussed, and then improvements for overcoming those vulnerabilities are

described.

4.6.1 A Vulnerability with FEA-M and an Improved Variant

A feature of FEA-M is to provide a connection between neighbouring plaintext blocks.

If the adversaries replay the earlier packets, the receiver can notice the faked mes-

sage. Therefore, it shows a feature which can persist against packet replay attacks.

However, although it tolerates packet loss problems, Mihaljevic’s improvement [35],

described by formulas (3.10) and (3.11), is vulnerable to packet replay attack. For

example, the adversary can obtain the earlier ith ciphertext block, Ci’. Then, s/he

captures the current ith ciphertext block, Ci and replaces Ci with Ci’. In cases where

K and V0 are not changed, the receiver cannot be aware that the cipher text is the

earlier plaintext. According to formulas (3.10), (3.11) and (4.2), what the receiver

gets is P ′i rather than Pi if C ′i replaces Ci.

Pi
′ = K−1 • (Ci

′ +K • V •Ki) •K−(i+n) +K • V •Ki (4.2)

100

The reason this kind of attack works is because the improvement in [35] treats each

block of plaintext independently.

4.6.2 Further Improvement for FEA-M

Compress plaintext to avoid Mihaljevic’sassumption [34]

FEA-M’s security degradation due to plaintext blocks being all 0s [33], [34] can be

solved with the compression algorithm. In general, before encryption by a regular

encryption algorithm, the multimedia plaintext should be compressed. Figure 4.22

describes how the multimedia data is compressed, encrypted and transmitted across

the insecure channel from party A to party B.

The computational complexity of this algorithm is O(n), an example of which follows.

Suppose that, in the first set of plaintext blocks, there are 0s in a row with length n2.

After compression, as shown in Figure 4.23, it is no longer an all-zero block:

Message

Source

Message

Destination

FEA-M

Decryption

Algorithm

FEA-M

Encryption

Algorithm

Compressed

Plaintext

Decompressed

Plaintext

..Ci-1, Ci, Ci+1..

Party A Party B

Insecure

Channel

Figure 4.22: Multimedia Communication Model

101

The well-known Routine Length Encode (RLE) technique [32] which reduces re-

dundant messages is deployed in a number of popular compression algorithms. In this

proposal, the RLE technique is utilized to overcome the weakness of blocks being all

0s. The details of RLE are listed below.

Table 4.9: Multimedia Data Compression Algorithm - RLE

Algorithm 6: Multimedia Data Compression - RLE

INPUT : Plaintext byte stream B1, B2 . . . Bn,
OUTPUT : Compressed Byte Stream (*Ni, Bi) or (Bi) where * indicates
how many times the subsequent data byte repeats itself where Ni > 1

1:
2:
3:
4:
5:
6:
7:
8:
9:
10

B = 1st Byte ; count = 0;
FOR (not end of the byte stream)
While (current byte value = B)
{count++; read next byte}
If (count > 1)
Put (*count; B);
Else
Put (B);
B = current byte value; count = 0;
END FOR

2

......0,0,...,0 ,0

After

Compress
n

n
2

Before

Figure 4.23: Compression for Blocks with All 0s

4.6.3 Reliable transportation to handle packet loss

FEA-M is vulnerable to packet losses. Furthermore, the improved variant [35] is

vulnerable to block replay attacks. In this sub-section, two methods for overcoming

102

these weaknesses are proposed.

Reliable FEA-M (rFEA-M)

Table 4.10: rFEA-M Algorithm

Algorithm 7: rFEA-M

The Sender Party A :

INPUT : Plaintext blocks P1, P2...Pr,
OUTPUT : Ciphertext blocks C1, C2,. . . C r , which are encoded by IDA-
Encode.

1:
2:
3:
4:
5:

Notation. || : concatentation; K: key matrix; Pi : a block of plaintext
for 1 ≤ i ≤ r; i+ +;
Ci = FEA-M-encrypt (Pi);
A→ B: IDA-Encode (Ci).
end for

The Receiver Party B :

INPUT : Ciphertext blocks, C1, C2,. . . C r which are encoded by IDA-
Encode;
OUTPUT: Plaintext blocks P1, P2...Pr, ;

1:
2:
3:
4:

for 1 ≤ i ≤ r; i+ +;
C ′i= IDA-Decode (Ci);
Pi = FEA-M-decrypt (C ′i);
end for

Packet loss is not a problem for applications using reliable transport protocols [e.g.

the Transmission Control Protocol (TCP)]. However, in cases where applications de-

ploying the FEA-M algorithm do not utilize such protocols, techniques which are

robust against packet loss have to be used. For instance, multimedia applications

such as medical imaging systems which cannot tolerate source data packet losses

103

demand this requirement. Therefore, a robust FEA-M (rFEA-M) method for over-

coming the FEA-M flaw is proposed. FEA-M is used to encrypt/decrypt data packets.

To make FEA-M robust against message losses, Rabin’s Information Dispersal Algo-

rithm (IDA) [43], [41] is utilized which encodes every cipher text block, introducing

some amount of redundancy. Algorithm 7 is proposed for implementing rFEA-M.

Algorithm 7 provides no-packet-lost service and implements FEA-M for network set-

tings with packet loss. However, it has higher computational costs due to the imple-

mentation of IDA to process every cipher text block. The computation complexity of

IDA is O(n2) where n is the data length of plaintext.

Correction for improved variant [35] for FEA-M

To provide data source authentication against packet replay attacks for the improved

variant [35], a secret-key-based message authentication code (e.g. MD5-MAC [32])

is used to process every cipher text block. Then, IDA is used to encode/decode all

MD5-MAC results to guarantee that they are all received by the receiver party. This

method is suitable for applications such as Internet TV or Internet Radio which can

tolerate source data packet losses.

Specifically, the improved variant [35] proposed by Mihaljevic is used to encrypt/decrypt

the data packets. Furthermore, to resist block replay attacks, MD5-MAC is used to

process every source data block. Then, the results of MD5-MAC are encoded with

IDA to guarantee that the MD5-MAC information is not lost during packet trans-

port. The receiving party uses the IDA algorithm to reconstruct all of the MD5-MAC

results it has received. Finally, the receiver can verify the integrity of every cipher

104

block. In the following, algorithm 8 is proposed to implement this method. Algo-

rithm 8 provides a data source authentication service for persisting against packet

replay attacks for the improved variant [35]. However, it has a higher computational

cost due to the implementation of IDA and MD5-MAC. The computation complexity

is O(n2) where n is the data length of MD5-MAC results and n is smaller than the

plaintext size.

IDA Algorithm

Algorithm 9 focusses on the implementation of IDA which presents reliable transmis-

sion for data packets by introducing some amount of information redundancy. IDA

splits the source data, for example, Cj, into n pieces, which are then encoded by the

IDA algorithm. At the receiving end, IDA can reconstruct Cj after receiving any

m pieces where m < n. However, guaranteeing zero packet loss comes at a cost of

increased communication overhead. For example, for r blocks, assume every block is

4096 bits. So, n is 64, m can be 50. For Algorithm 7, 4096*r*n/m bits of data are

sent over the network and at least 4096 ∗ r bits of data are received. For Algorithm

8, in addition to the source data, 64 ∗ r ∗ n/m bits of hash are sent over the network

and at least 64 ∗ r bits of hash are received.

According to Algorithm 9, the computation complexity of IDA is O(n2).

105

Table 4.11: Correction for the improved FEA-M variant

Algorithm 8: Correction for the improved FEA-M variant

The Sender Party A :

INPUT : Plaintext blocks: P1, P2...Pr,where r ≥ 1 and it is defined by
applications.
OUTPUT : Ciphertext blocks, C1, C2,. . . C r and H which is encoded by
IDA

1:
2:
3:
4:
5:
6:
7:
8:
9:

Notation. || : concatentation; K: key matrix; Pi : a block of plaintext;
H: concatenated result of MD5-MAC; H is empty ;
for 1 ≤ i ≤ r; i+ +;
Hi = MD5−MAC(Pi, Kupper128bits);
H = Hi || H;
Ci = Improved variant in [35]-encrypt (Pi);
A→ B: Ci;
end for
A→ B: IDA-Encode (H);

The Receiver Party B :

INPUT : Ciphertext blocks, C1, C2,. . . C r, and H which is encoded by IDA;
OUTPUT : Plaintext blocks: P1, P2...Pr;

1:
2:
3:
4:
5:
6:
7:
8:
9:

for 1 ≤ i ≤ r; i+ +;
Pi = Improved variant in [35]-decrypt (Ci);
end for
H ′ = IDA-Decode (H);
for 1 ≤ i ≤ r; i+ +;
if (Pi is received) and (MD5−MAC(Pi, Kupper128bits) 6= H’[i]);
return ”wrong data”;
endif
end for

106

Table 4.12: IDA Algorithm

Algorithm 9: IDA

The Sender Party A : IDA-Encode

INPUT : a block of data Cj
OUTPUT : encoded vectors T1, T2 . . . T n

(1) Split Cj into N/m pieces where N=n/8:

Cj = (c1, ..., cm), (cm+1, ..., c2m), ..., (cN−m−1, ..., cN)where, ci : byte

Ri = (c(i−1)m+1, ..., cim), where, i < N/m

(2) Process Cj: following the specification of IDA, choose n vectors, let every
subset of m different vectors be linearly independent. Then, process Cj:

Ti = Ai ·(R1R2...RN/m) = (ai1...aim) ·



c1, cm+1, ..., cN−m+1

.

.

.

cm, c2m, ..., cN


where1 ≤ i ≤

n
(3) Send T1, T2 . . . T n to the receiver.

107

The Receiver Party B : IDA-Decode

INPUT : encoded vectors T1, T2 . . . Tm

OUTPUT : a block of data Cj

(1) Assume that the receiver receives T1, T2 . . . Tm

T1 = A1 ·R1, A1R2..., A1 ·RN/m

T2 = A2 ·R1, A2R2..., A2 ·RN/m

...

Tm = Am ·R1, AmR2..., Am ·RN/m

(2) Prepare for the calculation of R1

Based upon T1. . . Tm, and formula (4.3), we can get:

A′ ·



c1

.

.

.

cm


=



A1 ·R1

.

.

.

Am ·R1


where A′ =



a11...a1m

...

...

...

am1...amm


(4.3)

(3) Since A’ is invertible, we can calculate R1:

R1 =



c1

.

.

.

cm


=



a11...a1m

...

...

...

am1...amm



−1

A1 ·R1

.

.

.

Am ·R1


(4.4)

(4) Repeating step 3, we can calculate R2. . . RN/m.
(5) Reconstruct Cj:
Cj = R1||R2. . . ||RN/m where || denotes concatenation.

Chapter 5

Performance Analyses, Experimental Results and Security

Discussion

The efficiency and security of the proposed approaches are the first priority in this

thesis and therefore they are evaluated carefully in this chapter one after the other.

In the first section, performance is analyzed, discussed and compared. In the second

section, experiments are implemented and results are demonstrated for group key

schemes as TGDH-H, TGDH+ and periodical TGDH-ASAP, based upon the real-

time group membership behaviour data set captured in the MBone. For the hybrid

architecture and M2 algorithms, experiments are developed using Network Simulation

2 (ns-2). In both simulation experiments, the fault tolerance of contributory group key

schemes is verified and a group key could be generated and managed in every group

session. In the third section, the authentication methods utilized in the proposed

approaches to protect the rekey messages are described and the security of these

approaches is studied.

108

109

5.1 Performance Analyses

In this section, the performance-relevant criteria are analyzed for TGDH-H, TGDH+,

and periodic TGDH-ASAP. The hybrid architecture, M2, and improved FEA-M have

already been discussed in chapter 4 so they will not be studied again here. In the

following, the metrics for computational cost, communication overhead and memory

consumption will be identified first. Then, TGDH-H, TGDH+, TGDH-ASAP will be

evaluated by these metrics.

5.1.1 Metrics for Performance Evaluation

Computational cost

Every group key scheme comprises a variety of cryptographic operations. To begin

with, this thesis considers the performance evaluation for each operation. Then, the

performance costs for each operation are accumulated to attain the total costs.

Previous experiments [39], [61] demonstrate that each cryptographic scheme needs

to be processed within a certain period of time, which can be viewed roughly as the

performance cost it demands compared with other schemes. Therefore, like other re-

search [39], [53], [62] this thesis assumes that the performances of these cryptographic

operations can be measured by timing. The experimental results referred to in this

thesis are listed below.

An experiment result: for the SUN ultra 1/170 workstation, the processing timings

for the hash, encryption/decryption, DH, digital signing and digital signing verifica-

tion operations are 0.01ms, 0.01ms, 100ms, 200ms and 50ms respectively [61] if the

110

key size is 1024 bits.

According to the results, the hash and encryption/decryption operations show an

almost equivalent performance and both of them are about 0.001 times equivalent to

a DH operation. Then, insight analyses demonstrate us that every DH key scheme

comprises two exponential operations for every party. Therefore, the computational

cost for the hash or encryption/decryption operation is 0.002 times that of an expo-

nential operation. So, the number of exponential operations can be treated as the

metric when comparing the computational cost of each group scheme which includes

different cryptographic operations. The number of encryption/decryption and hash

operations can be transferred into the number of exponential operations by a factor

of 0.002. Notice that all Diffie-Hellman operations deployed in this thesis can be

replaced with Elliptic Curve Diff-Hellman operations. Elliptic Curve Diff-Hellman

operations are more efficient in terms of computation cost and more lightweight in

terms of communication overhead than that of the regular DH. However, to compare

with previous solutions such as TGDH, I used regular DH in this thesis.

Communication overhead:

The areas for evaluating communication overhead consist of the number of rounds,

the number of unicasts and the number of multicasts. Previous research [15] shows

that the impact of unicasts and multicasts on network bandwidth can be compared

with respect to quantification. The costing function shown below was deployed by

Chuang and Sirb [15].

111

Ru/m =
Lu
Lm

= n−0.8 (5.1)

where n: group size; Lu: average unicast hops, Lm: total hops of a multicast tree;

This research uses it to evaluate the communication overhead between unicasts and

multicasts. Utilizing formula (5.1), the number of unicasts can be transferred into

the number of multicasts and finally each group key scheme is analyzed by comparing

the number of multicasts it demands. Therefore, the number of the multicast is the

metric for communication overhead for every group key scheme.

Memory consumption

In this thesis, for the sake of fairness, the key length for every group/auxiliary key

should be the same. So, the metric for evaluating memory consumption is the number

of group/auxiliary keys stored by every group member.

5.1.2 Performance Evaluation for Each Group Key Scheme

In this sub-section, this thesis first introduces the view of group membership events

so that subsequent discussion is based upon the same event. Then, the notions of

computational costs and communication overhead for the event are defined. Finally,

the performances of TGDH-H and TGDH+ are discussed.

Group Session Model:

First, let us take a look at the procedures for a group session. Every group session

can be treated as a sequence of group members joining and group members leaving.

112

Therefore, this thesis assumes that every group session is comprised of a set of J Join

& 1 Leave (J ≥ 0) events.

The performance for the J Join & 1 Leave (J ≥ 0) scenarios, which are shown in

Figure 5.1 (group member join/leave for TGDH+ and TGDH-H), is discussed. In

Figure 5.1 both the key tree, Tmain, and child key tree, Tchild, are available. Assume

that the number of members in Tmain is n and the number of members in Tchild is

J . For the sake of simplification, assume that n = 2x and J = 2y where x and y are

integers. Hence, both key trees are balanced.

Group Session

2M
J

1M
J j

M

J
2M

L 3M
L1j

M

J

.. ..&..1..J Join Leave&..1..J Join Leave

Figure 5.1: Group Session Model

Computational Cost:

Let COMP(J, n) denote the combined computational cost for all group members to

update the group keys for one J Join & 1 Leave event. COMP(J, n) is comprised of

the number of hash operations, the number of encryption/decryption operations, the

number of DH operations and the number of digital signing operations.

COMP (J, n) = NSIGN
J,n and NDH

J,n and NENC
J,n and NHash

J,n

where NHash
J,n :number of Hash;NENC

J,n :number of encryption/decryption;

113

NDH
J,n :number of Diffie-Hellman;NSIGN

J,n :number of digital signing;

Communication Overhead:

Let COMM(J, n) denote the combined communication overhead for all group mem-

bers to update the group keys for one J Join & 1 Leave event in which the original

group size is n. COMM(J, n) is comprised of the number of unicasts and the number

of multicasts.

COMM(J, n) = NUnicast
J,n and NMulticast

J,n where
NUnicast
J,n : Numberof Unicast;

NMulticast
J,n : Numberof Multicast

TGDH-H:

The following is an analysis of the J Join & 1 Leave scenario, as shown in Figure 5.1.

Computational cost for TGDH-H:

For every single group member joining, each group member should use hash to up-

date its group key. The total number of hash operations for updating all the group

members’ group keys for J join should be:

NHash
J,n =

J∑
i=1

(n+ i− 1) = J(2n+ J − 1)/2;

For every group member joining, in addition to the hash operations, encryption/decryption

operations and ID-based Diffie-Hellman operations (for each party, three exponential

operations are demanded) are also required while the sponsor delivers the group key

to the new member. The total number of encryption/decryption operations and ex-

ponential operations for J joining should be:

114

NEncrypt
J,n =

J∑
i=1

2 = 2J ; NExpon.
J,n = 2

J∑
i=1

3 = 6J ;

When one group member leaves, the leave protocol should update the keys on Tchild

and those on the key path for Mk. Keys associated with the leave operations on Tchild

are computed already in the case of the join protocol. The number of node keys to

be updated by all the members in Tchild is yJ and the number of blinded keys to be

updated by all the members in Tchild is J − 1. To update the keys on Mk’s key path,

the number of node keys to be updated by all the members should be 2n and the

number of blinded keys to be updated by all the members should be x. In total, the

number of exponential operations is:

NDH
J,n = yJ + (J − 1) + 2n+ x = (y + 1)J + 2n− 1

In the case where a group member joins, the join protocol does not demand any signing

operations. In the case where a group member leaves, according to the Dominating

algorithm, the number of multicast for updating Tchild and the Mk key path should

be J/2.

NSIGN
J,n = J/2

Consequently, it shows the potential that the device cannot respond in time if the

rate for the group member join / leave is too high:

Estimated acceptable rate for join requests: rate ≤ 1/(2 ∗ TDH)

Estimated acceptable rate for leave requests: rate ≤ 1/((3 ∗ J + 2 ∗ n− 2) ∗ TDH)

115

where TDH is the timing of DH operation. Communication Overhead for TGDH-H:

In the case where one group member joins, this join protocol uses an ID-based Diffie-

Hellman authentication which sends two unicast messages to generate the shared key

between the sponsor and the new group member. In the case where one group member

leaves, according to the Dominating algorithm, the number of signing operations to

update the Tchild and the Mk key path should be J/2.

NUnicast
J,n = 2J ; NMulticast

J,n = J/2

TGDH+

The J Join & 1 Leave scenario, as shown in Figure 5.1 is analyzed below.

Computational cost for TGDH+:

For every group member joining, every member should use hash to update its group

key and the sponsor should encrypt its hash result and send it to the new member.

In the case where a group member joins, the join protocol demands DH, Hash and

Encryption/Decryption operations. The join protocol for handling J joining requires

2J times the DH operations.

NHash
J,n =

J∑
i=1

(n+ i− 1) = J(2n+ J − 1)/2

NENC
J,n =

J∑
i=1

2 = 2J ; NDH
J,n =

J∑
i=1

2 = 2J

When one group member leaves, there are four cases, as discussed earlier.

Case 1 : TGDH is used to handle this 0 join & 1 leave scenario.

116

NDH
J,n = 2n− 1; NSIGN

J,n = 1

Case 2 : group members in Tmain should process hash operations. One DH is

launched between a group member in Tmain and a group member in Tchild. One

encryption and one decryption is also needed between them. In Tchild, keys associated

with the leaves on Tchild are already computed in the case of the join protocol. All

other DH-based keys should be updated and all group members should decrypt the

new group key.

NSIGN
J,n = J/2; NDH

J,n = 3J/2 + 1; NENC
J,n = J + 2; NHash

J,n = 2(n− J)

Case 3 or Case 4 : the leave protocol should update the keys on Tchild and those on

the key path for Mk. Keys associated with the leaves on Tchild are already computed

in the case of the join protocol. So the number of keys to be updated by all members

in Tchild is (J-1). The number of keys to be updated by all members in Tmain should

be 2n-1 due to the updating of Mk’s key path.

NDH
J,n = (J − 1) + 2n− 1 + 2J = 3J + 2n− 2

Communication cost for TGDH+:

In the case where one group member joins, this proposal’s join protocol uses the ID-

based Diffie-Hellman authentication which sends two unicast messages to generate

the shared key between the sponsor and the new group member. In the case where

117

one group member leaves, according to the Dominating algorithm, the number of

signing operations to update Tchild and the of Mk key path should be J/2.

NUnicast
J,n = 2J ; NMulticast

J,n = J/2

When one group member leaves, there are 4 cases.

Case 1 : NMulticast
J,n = 1

Case 2: NUnicast
J,n = 2; NMulticast

J,n = J/2

Case 3 or Case 4 : According to the dominating algorithm, the number of signing

operations to update for updating Tchild and Mk’s key path should be J/2. This

means that NMulticast
J,n = J/2

TGDH-ASAP

Computational cost for TGDH-ASAP:

For every joining operation, each member should use hash to update its group key

and the sponsor should encrypt its hash result and send it to the new member.

NHash
J,L,n =

J∑
i=1

(n+ i− 1) = J(2n+ J − 1)/2; NENC
J,L,n =

J∑
i=1

2 = 2J ;

The join protocol for handling J join requests requires 2J DH operations. At the end

of the interval, the keys on Tchild and on other L− 1 key paths should be computed.

Keys associated with the leaves on Tchild are already computed in case with the join

protocol. So,

118

NDH
J,L,n = L(log2

n
L

) + 4J − L− 2

+2((J − L) log2(J − L) + n(2 + log2 L+ 1))

When a group member joins, the join protocol requires no signing operations. At the

end of the interval, according to the ASAP scheme, the number of signing operations

is 1. So, NSIGN
J,L,n = 1.

Communication Overhead for TGDH-ASAP:

For group member join requests, unicasts are required to achieve the group key

scheme. At the end of the interval, unicasts and multicast are required as well for

updating the key tree.

NUnicast
J,L,n = 2J ; NMulticast

J,L,n = 1;

5.1.3 Performance Comparison for Group Rekey Schemes

Performance Comparison for Individual Rekeying

- TGDH vs. STR vs. TGDH-H vs. TGDH+

TGDH [25] and STR [26] have been known as the most efficient contributory group key

management schemes to provide individual rekeying. Detailed comparison have been

published [3], [25], [26]. The following is a comparison of TGDH-H and TGDH+ with

TGDH and STR. In Table 5.1 and Table 5.2, the computational cost, communication

overhead and memory consumption for TGDH-H, TGDH+, TGDH and STR are

summarized. The current group size is denoted by n and the height of the key tree

119

for TGDH, TGDH-H and TGDH+ is h. For merge protocols, the number of sub-

groups is k and the number of group members in every sub-group is m. For partition

protocols, the number of leaving members is p. In Table 5.1 and Table 5.2, both the

total cost and the main sponsor’s cost includes the cost for all the group members. For

TGDH, TGDH-H and TGDH+, this performance analysis is based upon an average

scenario. The overhead varies according to the balance of the key tree and the join or

leave member’s location in the key tree. In the following, the J join & 1 leave event,

the merge protocol and the partition protocol are compared.

120

T
ab

le
5.

1:
C

om
p
u
ta

ti
on

al
C

os
t

M
ai

n
sp

on
so

r
T

ot
al

E
x
p

on
en

ti
at

io
nH

as
h
/E

n
cr

y
S
ig

n
at

u
re

s
E

x
p

on
en

ti
at

io
n

H
as

h
/E

n
cr

y
S
ig

n
at

u
re

s

T
G

D
H

J
jo

in
&

1
le

av
e

2h
(J

+
1)

-
J
+

1
(2

n
-1

)(
J
+

1)
-

2J
+

1
M

er
ge

2h
-

L
og

2
k
+

1
2(

h
-l

og
2
k
)k

+
(2

k
-1

)
-

2k
P

ar
ti

ti
on

2h
-

M
in

(l
og

2
p
+

1,
h
)

2(
h
-l

og
2
p
)p

+
(2

p
-1

)
-

m
in

(2
h
,2

p
)

S
T

R

J
jo

in
&

1
le

av
e

4J
+

(3
n
/2

+
2)

-
J
+

1
(2

n
+

2)
J
+

(3
n
/2

+
2)

-
2J

+
1

M
er

ge
3m

+
1

-
2

(n
+

m
)m

+
3m

+
1

-
k
+

1
P

ar
ti

ti
on

3n
/2

+
2

-
1

(n
-1

)
(3

n
/4

+
1)

+
3n

/2
+

2
-

1

T
G

D
H

-H

J
jo

in
&

1
le

av
e

2(
h
+

lo
g 2

J
)

J
+

2
1

6J
+

4n
-4

J
(J

+
2n

+
1)

3J
/2

+
1

M
er

ge
2h

-
1

2(
h
-l

og
2
k
)k

+
(2

k
-1

)
-

k
P

ar
ti

ti
on

2h
-

1
2(

h
-l

og
2
p
)p

+
(2

p
-1

)
-

p

T
G

D
H

+

J
jo

in
&

1
le

av
e

2(
h
+

lo
g 2

J
)

J
+

2
1

6J
+

4n
-4

J
(J

+
2n

+
1)

J
/2

+
1

M
er

ge
2h

-
1

2(
h
-l

og
2
k
)k

+
(2

k
-1

)
-

k
P

ar
ti

ti
on

2h
-

1
2(

h
-l

og
2
p
)p

+
(2

p
-1

)
-

p

121

T
ab

le
5.

2:
C

om
m

u
n
ic

at
io

n
O

ve
rh

ea
d

an
d

M
em

or
y

C
on

su
m

p
ti

on

R
ou

n
d
s

C
om

m
u
n
ic

at
io

n
ov

er
h
ea

d

M
em

or
y

M
ai

n
sp

on
so

r
T

ot
al

U
n
ic

as
t

M
u
lt

ic
as

t
U

n
ic

as
t

M
u
lt

ic
as

t

T
G

D
H

J
jo

in
&

1
le

av
e

2J
+

1
-

[1
,

2J
+

1]
-

2J
+

1
0

M
er

ge
lo

g 2
k
+

1
-

H
-

2k
0

P
ar

ti
ti

on
m

in
(l

og
2
p
+

1,
h
)

-
H

-
m

in
(2

h
,2

p
)

0

S
T

R

J
jo

in
&

1
le

av
e

2J
+

1
-

2
-

2J
+

1
0

M
er

ge
2

-
1

-
k
+

1
0

P
ar

ti
ti

on
1

-
1

-
p

0

T
G

D
H

-H

J
jo

in
&

1
le

av
e

2J
+

1
1

1
3J

J
+

1
0

M
er

ge
lo

g 2
k
+

1
-

1
-

k
0

P
ar

ti
ti

on
m

in
(l

og
2
p
+

1,
h
)

-
1

-
1

0

T
G

D
H

+

J
jo

in
&

1
le

av
e

2J
+

3
1

1
2J

+
2

J
/2

[0
,

1]

M
er

ge
lo

g 2
k
+

1
-

1
-

k
0

P
ar

ti
ti

on
m

in
(l

og
2
p
+

1,
h
)

-
1

-
1

0

122

J join & 1 leave:

Computational costs

As seen from Table 5.1, TGDH+ is the most efficient in terms of the number of

exponentiations and the number of signing operations. TGDH-H ranks second. STR

and TGDH demand the most computational costs.

Communication costs

STR and TGDH require the most communication overhead; TGDH+ demands the

least. TGDH+ requires two more rounds than TGDH and STR. However, what

TGDH+ deploys for the two more rounds is a one-hop unicast. By contrast, other

key management schemes, TGDH, STR, and TGDH-H, use multi-hop multicasts for

every round which means more hop deliveries are required to send the rekey messages

around the network.

Storage costs

TGDH, STR and TGDH-H require no more auxiliary group keys. Most members of

TGDH+ should store not only a group key but an auxiliary group key.

Merge:

TGDH-H and TGDH+ have a lower cost compared with TGDH and STR in terms of

the number of multicasts and computational costs. STR needs the most number of

exponentiation operations and TGDH requires the most number of signing operations.

However, STR uses the least number of rounds.

Partition:

TGDH demands the most communication overhead and the most signing operations.

123

STR requires the least number of rounds, the least number of signing operations

and the least number of multicast messages, but it has the highest computational

cost, O(n2) times the exponentiations. Consequently, in terms of computational cost,

TGDH-H and TGDH+ are more efficient.

Finally, for our purposes, TGDH-H and TGDH+, are more efficient in J join & 1

Leave and merge protocols. Specifically, TGDH+ requires the lowest computational

costs, one more round and one more auxiliary group key compared with TGDH-H,

TGDH and STR. For partition protocols, STR works better in signing and multicast

metrics. For the remaining metrics of the partition protocol, TGDH-H and TGDH+

work better.

5.1.4 Experimental Results

MBone

Group communications were originally proposed to address the implementation of

multicasts which lead to the development of a variety of collaborative applications.

MBone (short for Multicast Backbone) is an example. As an early group communica-

tion service, MBone is an experimental backbone standing in for a virtual infrastruc-

ture providing multicast services for real-time data communications. In 1992, MBone

was originated at the March meeting of the Internet Engineering Task Force (IETF)

[11]. Equipped with Real-Time Protocol (RTP) [16] and Protocol Independent Mul-

ticasting (PIM) [52], MBone has seen significant progress since 1992. Consequently,

MBone serves as a platform for multicast services and group conferencing as well.

124

In this sub-section, the real-time group membership behaviour captured in MBone is

used to compare six individual group key management schemes, TGDH-ASAP, Queue

batch, TGDH, STR, TGDH-H, and TGDH+. The timings need to generate/update

the group key includes two parts, the processing time and the partial key transport

time. As for the later, the longer the length, the more time should be taken to estab-

lish/renew the group key. However, considering that the time to transmit the signal

around the planet is much shorter than that to perform heavyweight cryptographic

operations for a regular device in resource-limited networks, the length of the com-

munication channel affects the time for generating/updating the group key trivially.

Consequently, it is not counted as an important factor in terms of rekey timings.

The Tool for Collecting MBone Session Dynamics project at the College of Comput-

ing, Georgia Institute of Technology developed the Mlisten data collection tool to

capture information about when the group member joins and how long the duration

of memberships lasts. For communication in MBone sessions, a multicast IP address

is advertised for the purpose of addressing and two pairs of UDP ports are utilized for

spread connections. One pair is the data pair used to deliver group communication

data and the other pair is the control pair deployed to forward group member actions

such as joining and leaving.

Almeroth and Ammar, used Mlisten to monitor the group member behaviours [1]

[2]. Unreliability caused by data transport jitter or packet loss was corrected and

abnormal MBone behaviour eliminated. As a result, accurate data collecting can be

achieved in real-time.

125

Specifically, three data sets, (3.5) NASA STS-63 shuttle, (4.3) a UCB Multimedia Lec-

ture Series audio session and (4.4) all audio sessions, have been recorded in the log file

(ftp://ftp.cc.gatech.edu/people/kevin/release-dat) and posted online. The log data

has been studied and it was found that the group size is around 100 for every session

and the rate of join/leave requests is not high and is smooth [1] [2]. Although group

member behaviour is gathered from MBone, researchers for group communications

still believe that the group membership data can be treated as representative while

understanding other group behaviour underlying such network settings as MANETs.

To provide an example, a tiny portion of the original data is listed below.

multicast address Host address Date time Duration

+ port ID + port ID (join) (join) (s)

224.2.167.31:30758 129.13.81.2:1172 11/12/96 03:38:11 15

224.2.212.30:45145 129.13.81.2:1184 11/12/96 03:39:33 2

224.2.165.1:18278 129.13.81.2:1191 11/12/96 03:40:34 3

224.2.119.149/127:21732 129.13.81.2:1195 11/12/96 03:40:57 17

224.2.119.149:21732 129.13.81.2:1195 11/12/96 03:40:57 17

224.2.251.56:24654 129.13.81.2:1208 11/12/96 03:49:35 36

224.2.119.149/127:21732 129.13.81.2:1243 11/12/96 08:07:27 5

224.2.119.149/127:21732 129.13.81.2:21732 11/12/96 08:07:48 18

224.2.119.149:21732 129.13.81.2:21732 11/12/96 08:07:51 17

224.2.181.236:19562 129.13.81.2:19562 11/12/96 08:08:29 73

224.2.181.236:19562 129.13.81.2:1254 11/12/96 08:09:55 127

126

224.2.204.125:29862 129.13.81.2:29862 11/12/96 10:30:19 11302

224.2.251.56:24654 129.13.81.2:1286 11/12/96 10:33:22 69

224.2.0.1:23456 129.13.81.2:23456 11/12/96 10:34:57 36

In this proposal, in order to compare performance costs, two group sessions were

selected randomly to explore and examine the key management schemes: TGDH,

STR, TGDH-H and TGDH+. The first group session was with the advertised address

“224.0.1.11” and the second “224.2.100.100”.

5.1.5 STR vs. TGDH vs. TGDH-H vs. TGDH+

In terms of computational cost, the number of exponentiations (hash and Encrypt/Decrypt

operations is included by translating them into exponentiation by a ratio of 0.002)

for different group sizes is listed in Figure 5.1 and 5.5 for session 1 and session 2 re-

spectively. With regard to communication overhead, the total number of multicasts

for every group session (unicasts are included by translating them into multicasts by

a ratio of n−0.8 where n is the group size) is listed in Figure 5.2 and 5.6 for session

1 and session 2 respectively. The total number of exponentiations for every group

session is listed in Figure 5.3 and 5.7 for session 1 and session 2 respectively. The

total number of signings for every group session is listed in Figure 5.4 and 5.8 for

session 1 and session 2 respectively. The result shows that these proposals are more

efficient than TGDH and STR with respect not only to computational cost but also

to communication overhead. According to the result mentioned earlier, TGDH+ is

127

computationally lighter than TGDH-H. After examing the data set of MBone, I re-

alize that it is resulted from the scenario that a number of group members join the

group and then leave it very soon due to lacking of interests for the group session.

If every group member participates a group session in purpose and stays within the

group session for long-term, TGDH-H will show better performance than TGDH+

since the auxiliary key method will not be utilized for this case. That will lower the

performance of TGDH+.

Furthermore, after analyzing the key tree structure with the input of the real data

of MBone, a skinny key tree has been encountered during the group key gener-

ation/management for TGDH. However, in contrast, key trees for TGDH-H and

TGDH+ are more balanced than that of TGDH becasue of the utilization of moving

child key tree.

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Group Size

C
om

bi
ne

d
N

um
be

r o
f E

xp
on

.
 (#

Ex
po

n.
) STR

TGDH

TGDH+

TGDH-H

Figure 5.2: Individual Rekey: Number of Exponentiations for Session 1

5.1.6 Queue-Batch vs. TGDH vs. TGDH-ASAP

In terms of computational cost, the number of exponentiations (hash and Encrypt/Decrypt

operations are included via translating them into exponentiation with a ratio of 0.002)

128

STR

TGDH

TGDH-H TGDH+

0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f M
ul

tic
as

ts

STR TGDH

TGDH-H TGDH+

Figure 5.3: Individual Rekey: Total Number of Multicasts for Session 1

STR

TGDH

TGDH-H
TGDH+

0

50000

100000

150000

200000

250000

300000

To
ta

l N
um

be
r o

f E
xp

on
en

tia
tio

ns STR TGDH

TGDH-H TGDH+

Figure 5.4: Individual Rekey: Total Number of Exponen. for Session 1

for different group sizes is listed in Fig. 5.9. The total number of exponentiations for

this session is listed in Fig. 5.11. The total number of signings for every session is

listed in Fig. 5.12. In terms of communication overhead, the total number of multi-

casts for every session (unicasts are included via translating them into multicast with

a ratio of n−0.8 where n is the group size) is listed in Fig. 5.10.

According to Fig. 5.9 and Fig. 5.11, this proposal requires slightly more exponentia-

tions than Queue-Batch. However, considering the total computational cost, includ-

ing exponentiation and signing, this proposal is more efficient. Fig. 5.10 confirms

that the present proposal requires the least communication overhead. With regard

129

STR

TGDH

TGDH-H TGDH+

0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f S
ig

ni
ng

s

STR TGDH

TGDH-H TGDH+

Figure 5.5: Individual Rekey: Total Number of Signing Operations for Session 1

0

5

10

15

20

25

1 2 3 4 5 6

Group Size

C
om

bi
ne

d
N

um
be

r o
f E

xp
on

s.
 (

#E
xp

on
s.

)

TGDH

STR

TGDH+

TGDH-H

Figure 5.6: Individual Rekey: Number of Exponentiations for Session 2

to quality of service, this proposal responds to join requests immediately, whereas

Queue-Batch does not admit new members until the end of the interval.

5.1.7 Hybrid Architecture

In this sub-section, hybrid architecture and straightforward methods are simulated

via Network Simulation-2 (ns-2) [79], a widely used simulation tool. In this test, to

achieve a routing function, AODV, a routing protocol, is deployed to connect wireless

nodes and forward packets from one node to another. A multicast AODV (MAODV)

130

STR

TGDH

TGDH-H TGDH+

0

100

200

300

400

500

600

700

To
ta

l N
um

be
r o

f M
ul

tic
as

ts

STR TGDH

TGDH-H TGDH+

Figure 5.7: Individual Rekey: Total Number of Multicasts for Session 2

STR

TGDH

TGDH-H
TGDH+

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

To
ta

l N
um

be
r o

f E
xp

on
en

tia
tio

ns

STR TGDH

TGDH-H TGDH+

Figure 5.8: Individual Rekey: Total Number of Exponen. for Session 2

module [80] is extended at ns-2 to multicast packets for this project. Specifically, this

simulation utilized the test scenario components listed below:

NS2 version: ns-2.27

Network: Mobile Ad Hoc Network (MANET)

Routing Protocol: AODV

Multicast Protocol: MAODV

Area: 1500 x 300 meters

Number of nodes: 50

Number of repetitions: 10

131

STR

TGDH

TGDH-H TGDH+

0

100

200

300

400

500

600

700

To
ta

l N
um

be
r o

f S
ig

ni
ng

s

STR TGDH

TGDH-H TGDH+

Figure 5.9: Individual Rekey: Total Number of Signing Operations for Session 2

0
20
40
60
80

100
120
140
160
180
200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
Group Size

C
om

bi
ne

d

of
 E

xp
on

.

Queu-Batch
TGDH
Our Proposal

Figure 5.10: Periodical Rekey: Number of Exponentiations

Physical/Mac layer: IEEE 802.11 at 2 Mbps, 250 meter transmission range

Mobility model: random waypoint model with no pause time, maximum speed 20

m/s(high mobility scenarios).

This test was developed to simulate a scenario in which the key server is out-of-

service, in order to contrast how the straightforward method and the proposed hybrid

architecture generate a new group key. Specifically, the hybrid architecture multicast

the message to notify other group members that the key sever is out of service if the

key server cannot be detected with heartbeats. Then, a notification to let all group

members switch from the centralized method to the contributory one is forwarded as

132

Queue-Batch

TGDH

Our Proposal

0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f M
ul

tic
as

ts

Queue-Batch
TGDH
Our Proposal

Figure 5.11: Periodical Rekey: Total Number of Multicasts

Queue-Batch

TGDH

Our Proposal

0

20000

40000

60000

80000

100000

120000

140000

To
ta

l N
um

be
r o

f E
xp

on
en

tia
tio

ns

Queue-Batch
TGDH
Our Proposal

Figure 5.12: Periodical Rekey: Total Number of Exponentiations

well to other group members. By contrast, the straightforward method will generate

a new key via contributory solutions.

According to the test result, the hybrid method is better than the straightforward

method in terms of communication overhead. In terms of computational cost, the

hybrid architecture requires no computational operations and the straightforward

solution needs many operations to generate a new contributory group key.

133

Queue-Batch

TGDH

Our Proposal
0

200

400

600

800

1000

1200

1400

To
ta

l N
um

be
r o

f S
ig

ni
ng

s

Queue-Batch
TGDH
Our Proposal

Figure 5.13: Periodical Rekey: Total Number of Signing Operations

0
3000
6000
9000

12000
15000
18000
21000
24000
27000
30000
33000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
group size

of

 P
ac

ke
ts

Straightforward

Hybrid

Figure 5.14: Communications Overhead: Hybrid vs. Straightforward

5.1.8 DST-M2 vs. SP-GDH

The simulation platform and configations are the same as in section 5.1.6. The result

is demonstrated in Figure 5.15:

5.2 Security Discussion

This sub-section introduces authentication techniques to protect the rekey messages.

Then, security issues for TGDH-H, TGDH+ and TGDH-ASAP are discussed.

134

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
group size

of

 P
ac

ke
ts

DST-M2

SP-GDH

Figure 5.15: Communication Overhead: DST-M2 vs. SP-GDH

5.2.1 Authentication Protocols

In this thesis, rekey messages are delivered around the network via unicast or multi-

cast technology. To resist man-in-the-middle attacks, three authentication techniques

are provided.

Unicast.

The join and leave protocol utilizes unicast technology. When one group member

joins the group, the sponsor should generate a secure channel between them and

deliver the new member the updated group key. To set up the secret channel, an

ID-based Diffie-Hellman key exchange scheme [71] is used to generate the shared key

between the sponsor and the new member. Then, AES [32] is utilized to encrypt the

new group key with the shared key. Finally, the ciphertext is sent from the sponsor

to the new member via unicast delivery, to authenticate which, Hash-based Message

Authentication Codes (MAC) known as HMACs [32] are deployed. Having already

obtained the shared key, the new group member can decrypt the ciphertext and check

its integrity via HMACs. It is similiar for the case 2 leave protocols for TGDH-H and

135

TGDH+.

Multicast:

The leave, merge and partition protocols utilize multicasts to send rekeying messages.

To authenticate and encode multicast messages, the Signature Amortization Infor-

mation Dispersal Algorithm (SAIDA) [41] is used which signs the hash output of the

entire multicast message with RSA. RSA is well known for its efficient verification

operations. Therefore, SAIDA [41] can reduce the number of signing operations and

provide a low computational cost for verification. Other group members, having re-

ceived the message, can verify the data’s original authentication and update their

group key.

Mutual authentication:

During group membership changes, mutual authentication is necessary to guarantee

two parties of the scheme are exactly who they claim to be. Current available so-

lutions for specific networks can be deployed which means that this thesis assumes

the previous installment of default authentication schemes. For example, in Win-

dows Mobile Operating Systems or Windows Vista operating systems, a variety of

authentication schemes such as certificates and computer/user Kerbors V5, are uti-

lized for authentication purposes. With the installation of such Operating Systems,

one join/leave member and one insider member can confirm each other’s legal status

as long as the former needs to join or asks to leave. By using this solution, there

will be no problems for MIM or illegal actions.Where authentication services, such

as Kerb V5, are not deployed on-line, an ID-based solution can be used instead to

136

provide authentication services.

5.2.2 Security Analyses

The security of these individual group rekey schemes is based upon the security as-

sumptions of the two-party Decision Diffie-Hellman problem (DDH) [32], one-way

hash function (Hash) [32] and the Decision Binary Tree Diffie-Hellman problem

(DBTDH) [26], the details of which are well established [26] [32]. In this thesis,

forward secrecy, backward secrecy and loosely equivalently key independence for all

the proposed group key schemes (TGDH-H, TGDH+ and TGDH-ASAP) can be guar-

anteed and the security argument for them is provided below.

Firstly, let us consider backward secrecy. When a new group member joins, the

group key is updated via the one-way hash function for group members in TGDH-

H, TGDH+ or TGDH-ASAP. It is not computationally feasible to deduce the input

of the hash function even when the output of the hash function is known. So, the

new group member cannot determine the previous group keys. Furthermore, the new

group member will be forwarded the current group key encrypted by an intermedi-

ate secret shared between the new member and the sponsor. Therefore, the current

group key cannot be known by any outsiders. Consequently, backward secrecy can

be guaranteed.

Secondly, forward secrecy guarantees that the leaving member cannot compromise

any future group keys. For case 1, 3 and 4 of the leave protocol for TGDH-H and

TGDH+, the node keys and blinded keys on these changed key paths are refreshed

137

or updated. It is clear that this method belongs to the DBTDH problem, the back-

ward secrecy property of which has already been proven [25]. For case 2, the leave

protocol for TGDH+ uses the one-way hash function scheme. As discussed earlier,

the auxiliary group key which is used to calculate the new group key is not known by

the leaving member. Consequently, the leaving member cannot compromise the new

group key. After each group member leaves, the auxiliary group key is changed so

that no member belonging to the child key tree can obtain the new auxiliary group

key. The same applies to the TGDH-H leave protocol.

Thirdly, key independence can be satisfied with this protocol as well since it is not

computationally feasible to compromise the hash function scheme. Also, key ma-

terial is delivered within a secure channel (SAIDA to protect multicast; ID-based

Diffie-Hellman and HMAC to protect unicast). An outsider cannot compromise this

key material since the RSA signing and HMAC techniques are too difficult to be

broken. The one exception occurs when the group key is known by an outsider who

knows the following group keys via hash function until a group member leaves. Al-

though this loose key independence is kind of violent the independence discipline, this

tradeoff is worth considering for the performance gains.

Fourthly, authentication needs to be discussed. As analyzed earlier, utilizing au-

thentication solutions to protect the unicasts and multicasts can guarantee that the

proposed group key scheme is not vulnerable to man-in-the-middle and impression

attacks. Denial of Service (DoS) attacks are well studied and are beyond the scope

of this thesis. These proposals can utilize well-known solutions [81] which protect the

138

process against DoS.

Chapter 6

Conclusion

6.1 Summary of Research Work

Secure group key schemes play a key role in such group applications as collaborative

tasks, network games and multimedia conferences. In this research, three efficient

group key management schemes, an efficient group key partial key delivery technique,

a hybrid group key management architecture, and improved encryption algorithms

to facilitate the deployment for group key & encryption mechanisms were addressed.

Specifically, proposed approaches included two efficient individual rekey schemes

(TGDH-H and TGDH+) which can process join requests with a one-way hash func-

tion and postpone exponential operations when group members leave. Other methods

including moving key trees and utilizing auxiliary keys reduce computational cost and

communication overhead significantly. Furthermore, an efficient periodic batch rekey

scheme (TGDH-ASAP) has been proposed to overcome the out-of-sync problem re-

sulting from the proposed individual rekey schemes when the rate of group member

join/leave requests is too high to be handled. In addition, maximum matching al-

gorithms (M2) were proposed for decreasing communication overhead in generating

contributory group keys. Furthermore, a hybrid group key management architecture

139

140

has also been designed which combines the advantage of the centralized approach’s

efficiency and the contributory scheme’s fault-tolerance. The hybrid architecture in-

corporates both a centralized and a contributory scheme for key management, intro-

ducing a low cost switch. Finally, further vulnerabilities for FEA-M with appropriate

solutions have been presented.

Performance analysis shows that the proposed techniques decrease the number of

messages, the number of exponentiations or the number of signing operations com-

pared with other popular key generation and management schemes.

Future research might include group key schemes against Byzantine attacks in case

where the insider group members are not trustworthy.

6.2 Integrated Solution

Image a scenario with a number of nodes in MANETs. Several of the nodes are

launching a group session to accommodate a peer-to-peer tele-conference. At the

beginning of the session, lots of members are treated as initial members who cooperate

with each other to create the group at a certain time. Then, nodes can join or group

members can leave at any time as long as the group session is not closed.

Therefore, at the beginning of the group session, M2 algorithms can be used to deliver

the partial keys to construct the key tree and the TGDH+/TGDH-H group key

scheme is deployed to generate the group key. TGDH+/TGDH-H manages the group

key until an out-of sync problem is triggered. If the rate of join/leave request is too

high, TGDH-ASAP can be utilized to manage the group key updates. Furthermore,

141

if the key server is online, the hybrid architecture can be used and the centralized

scheme can switch to contributory ones in cases for which the key server is out of

control / not available. For secret messages delivered among group members, the

improved FEA-M algorithms can be used to encrypt/decrypt the messages.

Bibliography

[1] K. C. Almeroth and M. H. Ammar, Multicast Group Behavior in the Internet’s
multicast backbone (MBone), IEEE Communication Magazine, Vol 35 (6), pp.
124-129, June 1997.

[2] K. C. Almeroth, A long-term analysis of growth and usage patterns in the
multicast backbone (MBone). In Proceedings of IEEE Conf. on Computer
Communications (INFOCOM00), vol. 2, pp. 824-833, Tel Aviv, Israel, March
2000.

[3] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik, Secure
Group Communication Using Robust Contributory Key Agreement. IEEE
Trans. On Parallel and Distributed Systems. Vol. 15 (5), pp. 468-480, May 2004.

[4] E. R. Anton, and O. C. Duart, Group key establishment in wireless ad hoc
networks. In Proceedings of Workshop on Quality of Service and Mobility
(WQoSM 2002), pp. 11-17, Angra dos Reis, RJ, Brazil, Nov., 2002.

[5] G. Ateniese, M. Steiner, and G. Tsudik, Authenticated Group Key Agreement
and Friends, In Proceedings of 5TH ACM Conf. on Computer and Communica-
tion Security (CCS98), pp. 17-26, San Francisco, California, United States, 1998.

[6] G. Ateniese, M. Steiner, G. Tsudik, New multiparty authentication services and
key agreement protocols. IEEE Journal of Selective Areas Communication. Vol.
18, no. 4, pp. 628-639, April, 2000.

[7] C. Becker and U. Wille, Communication complexity of group key distribution,
In Proceedings of the 5th ACM Conference on Computer and Communications
Security (CCS 98), pp. 1-6, San Francisco, California, United States, Nov. 1998.

[8] D. Boneh, G. Durfee, and M. Franklin, Lower bound for multicast message
authentication. In proceedings of the conference on advances in cryptography
(EUROCRYPT01), pp. 437 452, Aarhus, Denmark, May 2001.

[9] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater, Provably
authenticated group Diffie-Hellman key exchange. In Proceedings of 8th

142

143

ACM Conf. on Computer and Communication Security (CCS01), pp. 255-264,
Philadelphia, PA, USA, 2001.

[10] M. Burmester and Y. Desmedt, A secure and efficient conference key distribution
system. In Proceedings of advances in Cryptology (EUROCPYPT 94), LNCS
Vol. 950, pp. 275-286, 1994.

[11] S. Casner and S. Deering, First IETF Inetrnet audiocast, ACM Computer
Communication Review, Vol 27 (7), pp. 92-97, July 1992.

[12] Y. Challal and H. Seba, Group key management protocols: a novel taxonomy,
International journal of information technology, Vol. 2 (1), pp. 105-118, 2005.

[13] R. Chandra, V. Ramasubramanian, and K. Birman, Anonymous gossip: im-
proving multicast reliability in mobile ad-hoc networks. In Proceeding of 21th
International Conference on Distributed Computing Systems (ICDCS01), pp.
275283, Phoenix, Arizona, USA, April 2001.

[14] T. Chiang and Y. Huang, Group keys and the multicast security in ad hoc
networks. In Proceedings of International Conference on Parallel Processing
Workshops (ICPP 03), 385 390, Kaohsiung, Taiwan, Oct. 2003.

[15] J. Chuang and M. Sirbu, Pricing multicast communication: A cost based
approach, in Telecommunication System, Vol 17 (3), pp. 281-293, 2001.

[16] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, G. Liu and L. Wei, PIM
architecture for wide-area multicast routing, IEEE/ACM Transaction on
Networking, Vol 4 (2), pp. 153-162, Apr. 1996.

[17] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics. Vol
17, pp. 449-467, 1965.

[18] A. Fekete, N. Lynch, and A. Shvartsman, Specifying and using a partionable
group communication service, IEEE/ACM Transaction on Networking, Vol 19
(2), pp. 171-216, May 2001.

144

[19] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
protocols for maximal matching and maximal independent sets for ad hoc
networks. In Proceedings of the 17th International Parallel and Distributed
Processing Symposium, (IPDPS03), pp. 87-96, Nice, France, April, 2003.

[20] T. Gopalsamy, M. Singhal, D. Panda, and P. Sadayappan, A reliable multicast
algorithm for mobile ad hoc networks. In Proceedings of the 22th International
Conference on Distributed Computing Systems (ICDCS 02), pp. 563-570,
Vienna, Austria, July 02-05, 2002.

[21] J. Gross, and J. Yellen. Graph theory and its applications. CRC Press, 1999.

[22] I. Ingemarsson, D. T. Tang, and C. K. Wong, A conference key distribution
system, IEEE Trans. Information Theory, Vol. 28, no.5, pp. 714-720, Sept. 1982.

[23] P. Judge and M. Ammar, Security Issues and solutions in Multicast Content
Distribution: A Survey, IEEE Network, Vol 17 (1), pp. 30-37, 2003.

[24] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, The SecureRing
Protocol for Securing Group Communications. In Proceedings of the IEEE 31th
Hawaii International Conference on System Science, (HICSS98), Vol. 3. pp.
317-326, Hawaii, USA, Janauary 1998.

[25] Y. Kim. A. Perrig and G. Tsudik. Simple and Fault-Tolerant Key Agreement for
Dynamic Collaborative Groups. In Proceedings of the 7th ACM Conference on
Computer and Communications Security (CCS00), pp. 235-24, Athens, Greece,
Nov., 2000.

[26] Y. Kim. A. Perrig and G. Tsudik. Group Key Agreement Efficient in Commu-
nication, IEEE Transaction on Computers, Vol. 53, (7), pp. 905-921, July 2004.

[27] Patrick P. C. Lee, John C. S. Lui, and David K.Y. Yau. Distributed Collabora-
tive Key Agreement and Authentication Protocols for Dynamic Peer Groups.
IEEE/ACM Transactions on Networking, Vol. 14(2), pp. 263-276, April, 2006.

[28] Shujun Li and Kwok-Tung Lo, Security Problems with Improper Implementa-
tions of Improved FEA-M, accepted by Journal of system and software in May
2006.

145

[29] J. Luo, P. T. Eugster, and J.-P. Hubaux, Route driven gossip: Probabilistic
reliable multicast in ad hoc networks, in Proc. of IEEE Conf. on Computer
Communications (INFOCOM’03), pp.2229-2239, San Francisco, CA, March
2003.

[30] Mark S. Manasse, A survey of micropayment tech-
nologies, and the MilliCent system http://www-
db.stanford.edu/infoseminar.Archive/SpringY99/spring99/manasse-slides.

[31] P. McDaniel, A. Prakash and P. Honeyman, Antigone: A flexible framework
for secure group communication. In Proceedings of 8th USENIX Security
Symposium, pp. 99-114, Washington, D.C., USA, August 1999.

[32] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, Oct. 1996.

[33] M. J. Mihaljevic and R. Kohno, Cryptanalysis of fast encryption algorithm for
multimedia FEA-M, IEEE Communications Letters, Vol. 6(9), pp. 382 84, Sep.
2002.

[34] M. J. Mihaljevic and R. Kohno, On wireless communications privacy and
security evaluation of encryption techniques. In Proceedings of IEEE Wireless
Communication and Networking Conf. (WCNC02), Orlando, FL, USA, pp.865-
868. Mar. 2002.

[35] M. J. Mihaljevic, On Vulnerabilities and Improvements of Fast Encryption
Algorithm for Multimedia FEA-M, IEEE Trans. On Consumer Electronics, Vol.
49, pp, 1199-1207, Nov. 2003.

[36] S. Miner and J. Staddon, Graph-based authentication of digital streams. In
Proc. of IEEE Symposium on Research in Security and Privacy, pp. 232-246,
Oakland, CA, US, May 2001.

[37] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal, Extended Virtual Syn-
chrony. In Proc. of IEEE Intl Conf. Distributed Computing Systems (ICDCS94),
pp. 56-65, Poznan, Poland, June 1994.

146

[38] M. J. Moyer, J. R. Rao and P. R. Ohatgi, A survey of security issues in multicast
communications, IEEE Network, Vol 13 (6), pp. 12-23, Dec, 1999.

[39] M. Okabe, S. Sakane and K. Miyazawa, A study of security architecture for
control networks over IP, 1st international workshop on Networked Sensing
Systems (INSS04), pp 128-133, Tokyo, Japan, 2004.

[40] B. Ouyang, X. Hong and Y. Yi, A Comparison of Reliable Multicast Protocols
for Mobile Ad Hoc Networks, IEEE SoutheastCon 05, pp. 339-344, Fort
Lauderdale, FL, US, April, 2005.

[41] J. M. Park, E. K. P. Park, and H. J. Siegel, Efficient Multicast Stream
Authentication Using Erasure Codes, ACM Trans. On Information and System
Security, Vol 6, no.2, pp. 258-285, May 2003.

[42] A. Perrig, D. Song, and J. D. Tygar. ELK, A new protocol for efficient large-
group key distribution. In Proceedings of the IEEE Symposium on Security and
Privacy, pp: 247-262, Oakland, CA, US, 2001.

[43] M. Rabin, Efficient dispersal of information for security, load balancing, and
fault tolerance, J. ACM, Vol. 36 (2), pp. 335-348, 1989.

[44] S. Rafaeli and D. Hutchison, A survey of key management for secure group
communication, ACM Computing Survey, Vol. 35 (3), pp. 309-329, Sep. 2003.

[45] V. Rajendran, Y. Yi, K. Obraczka, S. J. Lee, K. Tang and M. Gerla, Reliable,
Adaptive, Congestion-Controlled Adhoc Multicast Transport Protocol: Com-
bining Source-based and Local Recovery. Univerity of California Los Angeles,
Technical Report, 2003.

[46] M. K. Reiter, Secure agreement protocols: reliable and atomic group mutlicast
in RAMPART, in Proceedings of the 2nd ACM Conference on Computer And
Communication Security (ACM CCS 94), pp. 68-80, Fairfax, Virginia, USA,
1994.

[47] K.-H. Rhee, Y.-H. Park and G. Tsudk, A group key management architecture
for mobile ad-hoc networks, Journal of Information science and engineering,
Vol. 21, pp. 415-428, 2005.

147

[48] L. Rizzo and L. Vicisano, RMDP: an FEC-based Reliable Multicast Protocol for
Wireless Environments, ACM Mobile Computing and Communications Review,
Vol 2(2), pp. 23-31 Apr. 1998.

[49] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev, Ensemble Security,
Tech. Rep. TR98-1703, Cornell University, Department of Computer Science,
September 1998.

[50] O. Rodeh, K. Birman, M. Hayden, and D. Dolev, Using AVL trees for fault
tolerant group key management, Tech. Rep. 2000-1823, Cornell University,
Department of Computer Science, 2000.

[51] O. Rodeh, K. Birman, M. Hayden, and D. Dolev, The architecture and perfor-
mance of security protocols in the Ensemble Group Communication System,
ACM Transactions on Information and System Security, Vol. 4 (3), pp. 289-319,
August 2001.

[52] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP, A transport
protocol for real-time applications, Tech. Rep. RFC 1889, IETF, Jan. 1996.

[53] S. Setia, S. Koussih, and S. Jajodia, Kronos: A scalable group re-keying
approach for secure multicast. In Proceedings of the IEEE Symposium on
Security and Privacy, pp. 215 228, Oakland, CA, US, May, 2000.

[54] A. T. Sherman and D. A. Mcgrew, Key establishment in large dynamic groups
using one-way function trees. In Software Engineering, IEEE Trans. vol. 29, (5),
pp. 444-458, May 2003.

[55] M. Steiner, G. Tsudik, and M. Waidner, Key agreement in dynamic peer groups,
IEEE Transactions on Parallel and Distributed Systems, vol. 11(8), pp. 769-780,
August, 2000.

[56] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, A secure audio tele-
conference system, Advances in Crytology (CRYPTO 88), pp. 520-528, Santa
Barbara, California, USA, Aug. 1988.

[57] Y. Sun and K. J. Ray Liu, Securing Dynamic Membership Informationin Mul-
ticast Communications, in Proc. of IEEE Conf. on Computer Communications,

148

(INFOCOM04), Hongkong, China, Mar., 2004.

[58] K. Tang, K. Obraczka, S. J. Lee, M. Gerla,A reliable, congestion-controlled
multicast transport protocol in multimedia multi-hop networks. In Proceedings
of the 5th International Symposium on Wireless Personal Multimedia Commu-
nications, (WPMC 02), pp. 252-256, Honolulu, USA, October 2002.

[59] H. S. Venter and J. H. P. Eloff, A taxonomy for information security technolo-
gies, Computers and Security, vol. 22, (4), pp. 299-307, May 2003.

[60] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev, Group communication
specifications: a comprehensive study, ACM Computing Survey, Vol. 33(4), pp.
427-469, Dec. 2001.

[61] M. Waldvogel, G. Garonni, D. Sun, D. Weiler and B. Plattner. The VersaKey
Framework: Versatile Group Key Management, IEEE Journal of Selected Area
on Communication. (Special Issue on Middleware) Vol. 17(9), pp. 1614-1631,
Sep. 1999.

[62] X. Li, Y. Wang, O. Frieder, Efficient Hybrid Key Agreement Protocol for Wire-
less Ad Hoc Networks. In Proceedings of International Conference Computer
Communications and Networks, (ICCCN02), pp. 404 409, Maimi, FL, USA,
2002.

[63] H. Weatherspoon, C. Wells, P. Eaton, B. Zhao, and J. Kubiatowicz. Silverback:
A Global-Scale Archival System, Technical Report UCB/CSD-01-1139, Com-
puter Science Division, University of California, Berkeley, CA., 2001.

[64] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts,
IEEE/ACM Transactions on Networking, Vol 7 (4). pp. 502-513, Aug. 1999.

[65] C. K. Wong, G. Gouda, and Lam S. S., Secure group communications using key
graphs, IEEE/ACM Trans. Networking, vol. 8, (1),pp. 16-30, Feb 2000.

[66] M. Yajnik, S. Moon, and D. Towsley. Measurement and modeling of the
temporal dependence in package loss. In Proc. of IEEE Conf. on Computer
Communications (INFOCOM 99), pp. 345-352, New York, USA, 1999.

149

[67] Wen-Her Yang and Shiuh-Pyng Shieh, Secure key agreement for group com-
munications, International Journal of Network management, vol 11 (6), pp.
365-374, 2001.

[68] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable Group Rekeying:
A Performance Analysis. In proceedings of ACM SIGCOMM01, pp: 27-38, San
Diego, CA, USA, August, 2001.

[69] H. Yang, H. Luo, F. Ye, S. Lu, L. Zhang, Security in mobile ad hoc networks
challenges and solutions IEEE Wireless Communications, Vol. 11 (1), pp. 38-47,
Feb. 2004.

[70] X. Yi, C. H. Tan, C. K. Siew, and M. R. Syed, Fast encryption for multimedia,
IEEE Trans. On Consumer Electronics, vol. 47, pp. 101-107, Feb. 2001.

[71] X. Yi, C. H. Tan, C. K. Siew, and M. R. Syed, ID-based key agreement for
multimedia encryption, IEEE Trans. On Consumer Electronics, vol. 48, pp.
298-303, May, 2002.

[72] X. B. Zhang, S. S. Lam, D-Y Lee, and Y. R. Yang. Protocol Design for scalable
and reliable Group Rekeying, IEEE/ACM Transactions on Networking, vol. 11,
(6), pp. 908-922, Dec. 2003.

[73] Y. Zheng, Shortened digital signatures, signcryption and compact and un-
forgeable key agreement schemes, Submission to IEEE P1363a: Standard
Specifications for Public-Key Cryptography, 1998.

[74] X. K. Zou, B. Ramamurthy, S. S. Magliveras, Secure Group Communication
over data Networks, Springer, 2005.

[75] Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/ mscott/, Shamus Software Ltd.

[76] Jazzpazzle. Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/ mscott/, Shamus Software Ltd.

150

[77] Random Walk. Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/ mscott/, Shamus Software Ltd.

[78] Liu’s routing protocol. Multiprecision Integer and Rational Arithmetic C/C++
Library, http://indigo.ie/ mscott/, Shamus Software Ltd.

[79] http://www.isi.edu/nsnam/ns

[80] E. M. Royer and E. M. Perkins, Multicast Ad hoc On-Demand Distance Vector
(MAODV) Routing, IETF, Internet Draft: draft-ietf-manet-maodv-00.txt, 2000.

[81] C. R. Lin, QoS Routing in ad hoc wireless networks, pp. 31-40, Local Computer
Network, 1998, LCN ’98 proceedings, 23rd Annual Conference.

[82] M. Ruthmair and G. R. Raidl. A Kruskal-Based Heuristic for the Rooted
Delay-Constrained Minimum Spanning Tree Problem, Vol. 5717, pp. 713-720,
Lecture Notes in Computer Science, 2009.

[83] H. Bast, K. Mehlhorn, G. Schafer and H. Tamaki. Matching Algorithms Are
Fast in Sparse Random Graphs, Vol. 39, No. 1, pp. 3-14, Theory of Computing
Systems, Feburary, 2006.

